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Doctorado en Ciencias (F́ısica Aplicada)

Phase computing for automatic real-time
applications

Doctoral Thesis

Author
Rigoberto Juarez-Salazar

Advisers
Dr. Carlos I. Robledo Sánchez

Dr. Cruz Meneses Fabián

July, 2014





Para mi familia.



iv



Agradecimientos

Gracias a mis padres y hermanos por haberme dado la oportunidad de perseguir un sueño y ayudarme a
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Phase computing for automatic
real-time applications

Abstract

Phase computing is one of the most important
techniques in many scientific areas and engineer-

ing because of a wide variety of physical quantities
that can be measured with high precision by nonin-
vasive means. The phase-based optical measurement
systems attain high accuracy, fast response (even in
real-time), and they are low-cost. These features
have been possible through recent technological ad-
vances such as laser diodes, liquid crystal displays,
high-speed cameras, and high-performance comput-
ers. However, rapid technological development also
demands improving the conventional phase demodu-
lation methods.

This thesis is focused on phase demodulation for
optical measurement using interferometric and non-
interferometric setups. Fringe pattern phase demod-
ulation methods are developed. The main specific
contributions of this thesis are new phase-based mea-
surement methods described as follows.

1. Fringe pattern normalization by polynomial fit-
ting using least squares.

2. Fourier fringe-normalized analysis.

3. Generalized phase-shifting algorithms for in-
homogeneous phase shifts and spatio-temporal
visibility variation.

4. Phase-unwrapping by a rounding least squares
approach.

5. Phase-shifting interferometry by lateral dis-
placement of the light source.

The first four contributions refer to phase comput-
ing technology, designed to be user-free, with no
specialized computer resources required, and easy

to implement in other applications. Contribution 5
of the previous list concerns a simple and inexpen-
sive optical setup for interferometrical evaluations by
phase-shifting where the required phase shifts are in-
duced by coarse lateral displacement of the laser point
source.

Among the five contributions of this thesis,
contribution 3 is the most outstanding. This
contribution refers to a generalized phase-
shifting algorithm able to handle inhomoge-
neous nonlinear phase shifts, large fringe con-
trast variations, and the capacity to work with
a minimum of two fringe patterns. This con-
tribution represents a novel method that, to
the best of our knowledge, is the first to solve
the phase computing problem in those gener-
alized operation conditions.

Throughout this thesis, the concepts are illus-
trated by using several figures and examples. The
developed algorithms are implemented on the MAT-
LAB platform and the resulting computer code is pro-
vided. The suggested algorithms are tested by exe-
cuting they in both simulated and experimental sce-
narios. The obtained results show that the developed
work could be used in automatic real-time applica-
tions.

Index Terms— Phase-shifting, Fourier fringe
analysis, Phase-unwrapping, Fringe-pattern normal-
ization, Lateral displacement, Automatic real-time
applications.
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Extracción de fase para aplicaciones
automáticas en tiempo real

Resumen

Codificación de fase es una de las técnicas más
importantes en muchas áreas cient́ıficas y de in-

genieŕıa debido a la amplia variedad de cantidades
f́ısicas que se pueden medir con alta precisión por
medios no invasivos. Los sistemas de medición por
codificación de fase ópticos alcanzan alta exactitud,
rápida respuesta (incluso en tiempo real), y son de
bajo costo. Estas caracteŕısticas deseables han sido
posibles por los recientes avances tecnológicos en dio-
dos láser, pantallas de cristal ĺıquido, cámaras de alta
velocidad, y computadoras de alto rendimiento. Sin
embargo, el rápido desarrollo tecnológico también de-
manda mejorar los métodos convencionales de demod-
ulación de fase.

Esta tesis está enfocada en la extracción de
fase para medición óptica usando arreglos inter-
ferométricos y no interferométricos. Se desarrollan
métodos de extracción de fase a través de proce-
samiento de patrones de franjas. Las principales
contribuciones espećıficas de esta tesis son nuevos
métodos de medición de fase que se describen a con-
tinuación.

1. Normalización de patrones de franjas usando
ajuste polinomial por mı́nimos cuadrados.

2. Análisis de Fourier de patrones de franjas nor-
malizados.

3. Algoritmo de corrimiento de fase generalizado
para corrimientos de fase inhomogéneos y
variación espacio-temporal de la visibilidad.

4. Desenvolvimiento de fase por medio del enfoque
de redondeo y mı́nimos cuadrados.

5. Interferometŕıa de corrimiento de fase por de-
splazamiento lateral de la fuente de luz.

Las primeras cuatro contribuciones se refieren a la
tecnoloǵıa de extracción de fase diseñada para no

requerir intervención del usuario, no requerir recur-
sos computacionales especializados, y facilidad para
implementarse en distintas aplicaciones. La con-
tribución 5 de la lista anterior se refiere a un arreglo
óptico simple y económico de corrimiento de fase para
evaluaciones interferométricas donde los corrimientos
de fase son inducidos por medio del desplazamiento
lateral de una fuente láser puntual.

De las cinco contribuciones de esta tesis,
la contribución número tres es la que más
destaca. Esta contribución se refiere a un
método de corrimiento de fase generalizado ca-
paz de manejar corrimiento de fase no lineales
e inhomogéneos, robusto a variaciones signi-
ficativas de contraste de los patrones de fran-
jas, y posibilidad de funcionamiento hasta con
un mı́nimo de dos patrones de franjas. Esta
contribución representa un método novedoso
que, hasta donde sabemos, es el primero en
resolver el problema de extracción de fase en
condiciones de operación generalizadas.

A lo largo de esta tesis, los conceptos son ilustra-
dos usando figuras y ejemplos. Los algoritmos
diseñados son implementados en la plataforma MAT-
LAB y los códigos usados son proporcionados. Los
algoritmos sugeridos son probados ejecutándolos en
escenarios tanto simulados como experimentales. Los
resultados obtenidos muestran que el trabajo desar-
rollado puede ser usado en aplicaciones automáticas
en tiempo real.

Palabras clave— Corrimiento de fase, Análisis
de Fourier de patrones de franjas, Desenvolvimiento
de fase, Normalización de patrones de franjas, Des-
plazamiento lateral, Aplicaciones automáticas en
tiempo real.
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Chapter 1

Phase modulation and intensity
pattern normalization

In mathematics you don’t understand things.
You just get used to them.

John Von Neumann
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The phase coding is the most used method to perform high precision measurements. Phase coding could be
even the only way to obtain some physical information, e.g., the imaging of transparent cells in contrast

phase microscopy. In any case, the phase coding principle is preferred in many applications because this
principle exhibits an excellent signal-to-noise ratio.

In this chapter the phase coding principle is described in the context of optical metrology (by interfer-
ence and non-interference setups). In such applications, the phase of interest is recorded in intensity maps
known as fringe-patterns. The phase computing term (the general procedure of fringe-pattern processing to
extract the phase distribution of interest) will be defined.

The so-called fringe-pattern normalization is described and a summary of the state-of-the-art is given.
Finally, a fringe-pattern normalization algorithm based on parameter estimation is presented. This algorithm
is user-free and computationally efficient. Therefore, automatic real-time applications can be addressed.
Several figures and examples are used in the presentation of this topic. The computer code implemented in
the MATLAB platform is given.
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1.1. Introduction

1.1 | Introduction

Optical measurement systems are widely used because of its desirable characteristics as non-contact, high
resolution, and fast evaluations [1]. In such phase-base systems, the physical variable of interest (e.g.,
topography, deformation, refraction index, temperature distributions, strain, optical aberrations, magnetic
fields, and many others) is generally measured by sensing intensity maps in the form of fringe-patterns. For
this reason, it is necessary to develop efficient fringe analysis algorithms in order to extract the encoded
physical information of interest [2].

Generally, the optical measurement systems encode the interest information as a phase distribution.
Since the phase of an optical radiation cannot be sensed directly, it must be recovered from one or more
intensity maps (fringe-patterns) which can be modeled as [3]:

Ik(p) = ak(p) + bk(p) cosΦk(p), (1.1)

where p (a two dimensional spatial variable for some domain) is a point on the observation plane, Ik(p)
(k = 0, 1, · · · ) is the k-th acquired intensity distribution, ak(p) is the background light (also known as offset
light, bias, and average intensity), bk(p) is the modulation light (also known as fringe amplitude), and Φ(p)
is the encoded phase distribution. In some applications it is more convenient to define the fringe-patterns
(1.1) as

Ik(p) = ak(p) [1 + vk(p) cosΦk(p)] , (1.2)

where

vk(p) = bk(p)/ak(p), (1.3)

is the so-called fringe visibility (also known as the fringe contrast, fringe amplitude, and fringe modulation).
From now on, since all functions are depending on the spatial variable p, the dependence of p is omitted for
brevity. Initially, the background, modulation, and visibility terms can be hard to understand. Useful insight
about these concepts are attained by Example 1.

Fringe-patterns of the form (1.1) can be generated by interferometrical as well as non-interferometrical
techniques. For example, Fig. 1.2 shows the fringe-pattern obtained from the Twyman-Green Interferometer
and from a fringe projection profilometer [1]. In both optical setups, the physical information of interest (in
this case, the surface’s topography) is encoded as a phase distribution.

There are two important differences between the measurement systems shown in Fig. 1.2. Namely,
the sensitivity and the encoding procedure of the physical information.

� Interferometers have the most high sensitivity because their measurement unit is the wavelength of
the employed illumination source1. On the other hand, sensitivity in fringe projection techniques is
moderate. However, they are useful to test long surfaces as the structure of cars. Thus, both optical
setups are useful; the choice of one or another depends on the application.

� With respect to the encoding information, from Fig. 1.2 we can see that, although the physical infor-
mation is the same (except scaling), the topography of the evaluating surface is encoded in different
ways. The interferometer generates closed fringes while the profilometer generates open fringes. This
difference is due to the fringe projection technique includes a spatial carrier in the resulting fringe-
pattern beforehand2. Thus, the choice of a particular fringe analysis method depends on if a temporal
carrier or spatial carrier is available. This will be discussed in the following chapters.

1For laser sources in the optical range, λ is in the interval [400, 720] × 10−9 meter [4]. Interferometers are able to sense
fractions of the wavelength λ; from tenths to thousandths.

2For the fringe-projection techniques, the spatial carrier addition is inherent. A spatial carrier also can be generated in
interferometrical setups, for example, by tilting the reference mirror M in Fig. 1.2(a).
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1. Phase modulation and intensity pattern normalization

Example 1 (Background, modulation, and fringe visibility). Let Imax and Imin be the upper and
lower envelopes, respectively, of an oscillating curve. Then, the background light a(p) can be easily
seen as the average function:

a(p) =
Imax(p) + Imin(p)

2
. (1.4)

On the other hand, the modulation light b(p) can be interpreted as the amplitude of the oscillations
(around the background component); i.e.,

b(p) =
Imax(p)− Imin(p)

2
. (1.5)

By using the equation (1.3), an alternative definition of fringe visibility is obtaineda:

v(p) =
b(p)

a(p)
=
Imax(p)− Imin(p)

Imax(p) + Imin(p)
. (1.6)

To illustrate these concepts, in Fig. 1.1 typical fringe-patterns (in one-dimensional for visual-
izations purposes) are shown. Notice that, although the fringe-patter in the first row of Fig. 1.1
seems to oscillate with a background and modulation near constants, the fringe visibility is poor and
non-constant.

On the other hand, the fringe-pattern in the second row of Fig. 1.1, although it has a large varying
background and modulation components, the visibility is constant and unitary.

aThis is a convenient equation because it allow us to compute the visibility approximately by using only the maximum
and minimum intensity levels reached in some regions of the fringe-pattern.
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Figure 1.1: The background, modulation, and fringe visibility concepts. (1st column) The upper envelope
Imax and the lower envelope Imin of a fringe-pattern I(p). (2nd column) The background light or average
intensity a(p). (3rd column) The modulation light or fringe amplitude b(p). (4th column) The fringe visibility.
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1.2. Phase computing technology

BS	  

S	  

M	  

OP	  

L	  

F	  

(a)	  

Projector	   Camera	  

S	  

DP	  PP	  

(b)	  

Figure 1.2: Evaluation of the surface S (a plane with a spherical deformation at the center). (a) Twyman-
Green Interferometer. F is a point laser source, L is the collimating lens, BS is a beam-splitter, M is a
reference mirror, and OP is the observation plane. (b) Optical profilometer by fringe projection. PP is the
projected pattern and DP is the acquired one.

1.2 | Phase computing technology

Usually, the physical information encoded in the fringe-patterns (1.1) is associated with the phase distribution
Φk. On the other hand, the background ak and amplitude bk contain information about other contributions
such as environmental illumination, intensity profile of the employed source and its spatial location, object
reflectance, polarization, among others [5]. This claim is illustrated in Example 2 for the case of interference
of two beams.

Phase computing will be the term used to refer to the necessary data processing stages involved in the
phase demodulation computer routines. The Phase demodulation is the extraction of the phase distribution
Φ from one or more fringe-patterns I(p) given by (1.1).

A phase computing system can be integrated of several stages such as wrapped phase extraction, phase
unwrapping, fringe-pattern normalization, and noise filtering. A graphic illustration of this concept is given
in Fig. 1.3. The fringe-pattern normalization is addressed in this chapter. The other fringe analysis stages
are dealt in the following chapters.
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1. Phase modulation and intensity pattern normalization

Wrapped	  
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Pre-‐
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unwrapping	  
Intermediate	  
processing	  

Figure 1.3: Generic phase computing block for phase demodulation and the most common stages.

Example 2 (Fringe-pattern generated by interference of two coherent beams). Let Eo(p) and Er(p)
be two coherent beams (corresponding to the object and reference beams), given, respectively, by

Eo(p) = Ao(p) exp[iϕ(p)] and

Er(p) = Ar(p) exp[−iδ(p)]

where i is the imaginary unit (i2 = −1). For simplicity, these beams are linearly polarized into the
same polarization plane. The intensity distribution from the interference of Eo and Er is given by

I = |Eo + Er|2

= E2
o + E2

r + 2EoEr cos(ϕ+ δ)

= Io + Ir + 2
√
IoIr cos(ϕ+ δ)

= a+ b cos(ϕ+ δ),

(1.7)

where | · | denotes the module. The resulting background a and amplitude b are given as

a = Io + Ir, (1.8a)

b = 2
√
IoIr. (1.8b)

Notice that the resulting intensity distribution (1.7) has the same mathematical description that (1.1).
Clearly, the functions a and b do not provide any information about the phases ϕ or δ. In this case,
the functions a and b contain only information about the intensity profiles Io and Ir corresponding to
the interfering beams.

1.3 | Fringe-pattern normalization

Many existing fringe-pattern processing algorithms for wrapped phase extraction assume that the background
ak and fringe amplitude bk are constants so that the intensity variation correspond to the phase Φk only [6].
Unfortunately, only under stringent conditions, this assumption is fulfilled. Commonly, large variations
of both background and modulation lights are usual in fringe-patterns [7]. For example, in holographic
and speckle interferometry, the lack of illumination control (e.g., power variation of the laser source [8]) or
the illumination by a divergent beam leads to a non-uniform background and modulation lights [9]. In this
situation, conventional fringe-pattern processing algorithms compute an erroneous phase distribution because
the variations of the background and modulation lights are misinterpreted as a phase contribution.

Consequently, the variations of the background and modulation lights are an important systematic
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1.4. Statistical approach

noise source which cannot be neglected [6]. This systematic error source significantly reduces the accuracy of
the final result because the assumption of cosine-shaped intensity distribution is not fulfilled [9]. According
to the example 2, if the interest information is into the encoded phase ϕ+δ (as is usually the case), the fringe-
pattern normalization seems to be a desirable “filter” to suppress the less important illumination conditions
before starting the phase demodulation process [5].

For a given fringe-pattern, the procedure of background light suppression and modulation light nor-
malization is denominated fringe-pattern normalization [5–7, 10]. This process gives as result a pure
sinusoidal phase modulated signal.

There exist several fringe-pattern normalization techniques, some examples are:

� Direct measurement of the background and modulations lights [11]. It is the most accuracy and simple
method. However, the requirement of additional measurements increases the experimental complexity.

� Filtering in the frequency domain [12]. The most employed approaches are

– Windowed Fourier filtering [13].

– Orthogonal bandpass filtering [7],

– Hilbert transform using Reisz filters [5],

– The Schlieren filtering [7],

– Envelope detection with spin filtering [6],

– Adaptive filtering [14],

– Continuous wavelet transform [12,13] and interferogram clipping [15].

These methods have been successfully implemented in numerous applications. However, the filtering
approach may distort the low-period fringes and the filter design is not easy. Thus, filtering is, in
general, difficult to apply.

� The modified regularized phase tracking [16]. This approach is quite useful in fringe patterns with high
frequency noise, although it requires a previous background suppression and a long processing time.

� Local histogram [17]. This is an efficient method but it depends strongly on the fringe-pattern spatial
structure.

� The bidimensional empirical mode decomposition aided by the partial Hilbert transformation [10].

� The directional derivative approach [18].

� Iterative procedures [14,16,19]. They can be implemented for the most general situations and adaptive
cases. However, the required high programming amount and processing time can be prohibitive.

In summary, the above described fringe-pattern normalization methods are either computationally
exhaustive or difficult to implement. This situation can be addressed by using the parameter estimation
approach.

1.4 | Statistical approach

Let a sinusoidal signal given as
y = a cosϕ+ η, (1.9)

6



1. Phase modulation and intensity pattern normalization

where ϕ is unknown and η ∼ N (b, σ2), or

y = a cosϕ+ b+ ϵ, (1.10)

where b = E [η] and ϵ ∼ N (0, σ2).

We have that the expected value of the signal y is

E [y] = aE [cosϕ] + b+ E [ϵ]︸︷︷︸
0

, (1.11)

We have that the average E [cosϕ] is

E [cosϕ] = 1

b− a

∫ b

a

· · · (1.12)

· · · . Thus, we can use
E [cosϕ] = 0. (1.13)

Therefore
E [y] = b. (1.14)

On the other hand, we have that the variance of y leads to

V[y] = E [(y − E [y])2]
= E [(a cosϕ+ ϵ)2]

= E [a2 cos2 ϕ+ ϵ2 + 2aϵ cosϕ]

= E [a2(1 + cos 2ϕ)/2 + ϵ2 + 2aϵ cosϕ]

=
1

2
a2 +

1

2
a2 E [cos 2ϕ]︸ ︷︷ ︸

0

+ E [ϵ2]︸︷︷︸
σ2

+2aE [ϵ cosϕ]

(1.15)

Under the assumption that the variables ϵ and cosϕ are uncorrelated, then E[ϵ cosϕ] = E[ϵ]E[cosϕ] = 0.
Therefore,

V[y] = 1

2
a2 + σ2. (1.16)

Thus, the amplitude of the sinusoid can be obtained as

a =
√
2(V[y]− σ2). (1.17)

Finally, the sinusoidal signal y ca be normalized as

ȳ =
y − E [y]√
2(V[y]− σ2)

. (1.18)

1.5 | Fringe-pattern normalization by the parameter estimation approach

An alternative approach for fringe-pattern normalization consists on the parameter estimation. This approach
uses the least-squares method to generate a fast, automatic and robust algorithm. A detailed explanation of
this fringe-pattern normalization method is given as follows.
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1.5. Fringe-pattern normalization by the parameter estimation approach

Because a least-squares approximation process is employed for fringe-pattern normalization, some
assumptions derived from the requirements of the least-squares method itself must be to take into account.

Least-squares assumptions

The least-squares is a successful method to process experimental data sets corrupted with symmetri-
cally distributed (e.g., Gaussian) noise with zero mean. Thus, many fringes (open and closed in any
combination) across the recorded fringe-patterns are required in order to the sinusoidal term in (1.1)
satisfies both symmetric distribution and zero mean. Then, an approximated solution for ak(p) and
bk(p) can be estimated by a least-squares polynomial fitting.

1.5.1 | Intensity profiles

As it was shown by example 2, the background a and amplitude b functions can be estimated by using the
fact that a and b have a close relationship with the intensity profile of the interfering beams3. Particularly,
for a laser source, the irradiances Io and Ir are assumed to be Gaussian functions modelled as

Io = Io +Ro,

Ir = Ir +Rr,

where Io and Ir are P -degree polynomials (the respective truncated Taylor series) with P equal to the desired
approximation order. Ro and Rr are the corresponding residual functions. Clearly, if the polynomial model
is exact, the residual functions will be noise.

Since the addition of two P -degree polynomials is another P -degree polynomial, the function a can be
approximated by

a = Io + Ir ≈ YPCPX
T
P , (1.19)

where CP ∈ ℜ(P+1)×(P+1) is an upper cross-triangular coefficient matrix, XP and YP are the respective
regression matrices where its columns are the basis functions employed. Notice that the coefficient matrix
CP defines an bi-polynomial (on basis XP and YP ) of degree at most P .

Similarly, since the product of two P -degree polynomial is a 2P -degree polynomial, the function b2

can be approximated by
b2 = 4IoIr ≈ 4Y2PC2PX

T
2P , (1.20)

where C2P ∈ ℜ(2P+1)×(2P+1) is an upper cross-triangular coefficient matrix, X2P and Y2P are the respective
regression matrices.

1.5.2 | The degree of the polynomials

When the polynomial description of the intensity profile is chosen, the profile is fully characterized by setting
the polynomial basis and the degree. For example, the Taylor expansion is a polynomial representation in
canonical basis of degree P where P is the order of approximation.

Accordingly, since the background light is the sum of two P -degree polynomials, say Io + Ir as shows
(1.19), we conclude that the background a must be a P -degree polynomial.

3Although the particular case of two interfering beams is exposed, the conclusion about that the functions a and b include
only illumination conditions is valid for non-interfering situations (e.g. fringe-projection). Thus, this normalization approach can
be implemented to other applications. Perhaps some minor adaptations are necessary; for example, the definition of appropriate
basis functions.
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1. Phase modulation and intensity pattern normalization

On the other hand, the modulation light is the square root of the product of two P -degree polynomials,
say 2(IoIr)

1/2 as shows (1.20). Thus, seems logical that the modulation b is a P -degree polynomials as well
because, even though the product IoIr results in a 2P -degree polynomial, the square root operation should
reduce the polynomial degree by half. Unfortunately, this is true for perfect square polynomials only. The
example 3 will illustrate this.

Example 3 (Perfect and non-perfect square polynomials). For simplicity, the 1-dimensional case is
addressed. Let p1(x) and p2(x) be two 2nd-degree polynomials, say

p1(x) = (x− 1)2,

p2(x) = (x+ 1)2,
(1.21)

for x ∈ [−2, 2] as shows Fig. 1.4(a). Now, the product p1(x)p2(x) is computed and shown in Fig.
1.4(a). Finally, the square root is applied to the resulting function. Fig. 1.4(b) shows the result of
this procedure.

From Fig. 1.4(b), it is clear that the curve [p1(x)p2(x)]
1/2 is not a 2nd-degree polynomial (a parabola

curve). For this particular case, the curve [p1(x)p2(x)]
1/2 is equal to

|x2 − 1|.

This last function can not be a single polynomial for any abscissa x.
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Figure 1.4: The square root of the product of two 2nd-degree polynomials is not necessary another 2nd-degree
polynomial. The small value ε in (b) was added in order to visualize the two superposed curves.

The explicit structure (polynomial) of the functions a and b2, described by (1.19) and (1.20), is
exploited for fringe-pattern normalization. Moreover, this approach allow us to perform estimation of a and
b in single and multiple mode.
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1.5. Fringe-pattern normalization by the parameter estimation approach

Single and multiple estimation mode

Usually, the parameters a and b in (1.1) are restricted to be functions of p only. In other words, all
fringe-patterns (1.1) must have the same background and modulation lights. This situation will be
referred to as single estimation.

The most general case is that the parameters a and b change for each fringe-patterna. This situation
will be referred to as multiple estimation.

aSome examples of this situation are: phase-shifting interferometry by controlling the electrical current of the
laser diode [8], amplitude modulation [20], diffraction with amplitude grating [21, 22], and lateral displacement of the
illumination source [23].

1.5.3 | Multiple estimation — ak(p) and bk(p)

If the parameters ak and bk are required to be estimated for each k-th fringe-pattern Ik (1.1) (or there is
a single fringe-pattern), the least-squares method is used to fit the polynomial (1.19) to the experimental
measurements (1.1) finding the coefficient matrix CP (k) as

ĈP (k) = Y †
P IkX

‡
P . (1.22)

With the above computed matrix ĈP (k), the background light in Ik is estimated by (1.19). Namely

âk = YP ĈP (k)X
T
P , (1.23)

where âk is the best approximation of ak (in least-squares sense for the particular basis functions employed).

Next, for the estimation of the modulation light, we compute first the elementwise exponentiation

(Ik − âk)
2 = b2k cos

2 Φk

=
1

2
b2k +

1

2
b2k cos(2Φk),

(1.24)

where the last equation was obtained by applying the trigonometric identity cos2 x = [1 + cos(2x)]/2.

Notice that (1.24) has the same structure as (1.1). This allow us to estimate b2k/2 in a similar form
to the estimation of ak. Accordingly, the least-squares method is used for fitting the polynomial (1.20) to
(Ik − âk)

2 given by (1.24). For this, the corresponding matrix coefficients Ĉ2P is found as

Ĉ2P (k) = Y †
2P (Ik − âk)

2X‡
2P . (1.25)

Then the quantity b2k is reconstructed as

b̂2k = 2Y2P Ĉ2P (k)X
T
2P . (1.26)

Finally, the modulation light b̂k is obtained by computing the pointwise square root of the fitted polynomial
(1.20). Again, as before with âk, b̂k is the best approximation of bk.

1.5.4 | Single estimation — a(p) and b(p)

For specific applications, the equality of background and modulation lights for all fringe-patterns can be
guaranteed by the optical setup [?]. For this case, it is required to compute a single pair background-
modulation from all provided frames. Mathematically, instead of to find the solutions ĈP (k) and Ĉ2P (k) for
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1. Phase modulation and intensity pattern normalization

each k with the equations

YP ĈP (0)X
T
P = I0,

...

YP ĈP (K − 1)XT
P = IK−1,

(1.27)

and

2Y2P Ĉ2P (0)X
T
2P = (I0 − â0)

2,

...

2Y2P Ĉ2P (K − 1)XT
2P = (IK−1 − âK−1)

2,

(1.28)

respectively, it is required to find just two coefficient matrices, Ĉp and Ĉ2P , such thatYP...
YP

 ĈPX
T =

 I0
...

IK−1

 , (1.29)

and

2

Y2P...
Y2P

 Ĉ2PX
T =

 (I0 − â0)
2

...
(IK−1 − âK−1)

2

 , (1.30)

where â and b̂2 approximate all âk and all b̂2k (k = 0,K − 1), respectively.

It is not difficult to prove that the matrices Ĉp and Ĉ2P are the arithmetic mean of Ĉp(k) and Ĉ2P (k),

respectively. This claim is verified for Ĉp in the example 4. In summary

ĈP = Y†
PJX

‡
P =

1

K

K−1∑
k=0

ĈP (k), (1.31)

Ĉ2P = Y†
2P [J −A]2X‡

2P =
1

K

K−1∑
k=0

Ĉ2P (k), (1.32)

where YP = [Y T
P · · · Y T

P ]T , Y2P = [Y T
2P · · · Y T

2P ]
T , J = [IT0 · · · ITK−1]

T , and A = [âT · · · âT ]T are block
matrices formed by K times the matrix YP , Y2P , I0, or â depending on the case.

1.5.5 | Saturation

Once the background and modulation lights are estimated, the normalization of the fringe-patterns is carried
out as follows. With the recovered functions â and b̂, we compute

Ĩk = [Ik − âk]/b̂k (1.33)

for all p such that4 b̂(p) ̸= 0.

4The points p where b̂(p) = 0 cannot be processed. However it is not a serious problem because the computation is point-wise.
Therefore, the intensity values at such singular points can be determined indirectly by an appropriate interpolation from the
nonsingular neighborhood points.
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1.5. Fringe-pattern normalization by the parameter estimation approach

Example 4. For estimation of a single background function from the given K fringe-patterns, the
matrix system YP...

YP

CPX
T =

 I0
...

IK−1

 , (1.34)

is solved for CP in the least-squares sense as

ĈP =

YP...
YP


†  I0

...
IK−1

X‡. (1.35)

By the definition of the least-squares inverse [·]†, we have thatYP...
YP


†

=
1

K
(Y T

P YP )
−1[Y T

P · · · Y T
P ]

=
1

K
[Y †

P · · · Y †
P ],

then

ĈP =
1

K
[Y †

P · · · Y †
P ]

 I0
...

IK−1

X‡

=
1

K
[Y †

P I0 + · · ·+ Y †
P IK−1]X

‡

=
1

K
[ĈP (0) + · · ·+ ĈP (K − 1)].

(1.36)

In words, the matrix ĈP is obtained as the arithmetic mean of the matrices ĈP (k) with k = 0,K − 1.

Notice that Eq. (1.33) does not guarantee that Ĩk ∈ [−1, 1] because of the noise in Ik and the fact that

â and b̂ are approximations. Therefore, Ĩk = cosΦk will have, in generally, complex solution for Φk. Then,
to ensure that the solution is in real values, the saturation function is applied as

Īk = sat
(
Ĩk

)
= cosΦk, (1.37)

where Īk are the normalized fringe-patterns, and the saturation function is defined by

sat(x) =

 1 if x > 1,
x if |x| ≤ 1,
−1 if x < −1.

(1.38)

with | · | denoting the absolute value. Fig. 1.6 shows a plot of this saturation function.

This fringe-pattern normalization method is graphically represented in Fig. 1.5(a). FPNorm is the
computational function resulting of an implementation of this algorithm in the Matlab software. The code
is shown in Fig. 1.5(b).

The inputs and outputs involved by the function FPNorm are listed below.
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1. Phase modulation and intensity pattern normalization

Ik u2 satâkLS +−
+

LS
b̂2k 2 b̂k u v2 u

Ik Ik

(a) Block diagram. The letters u and v denote the first and second block’s
input, respectively.

function [bI,ha,hb,x,y] = FPNorm(I,deg,mode)
%Fringe-pattern normalization by parameter
%estimation method.
%
%This code is an implementation of the work
%reported in [Optics and Lasers in Engineering,
%Vol. 51(5), pp. 626 - 632 (2013). DOI:
%http://dx.doi.org/10.1016/j.optlaseng.2012.12.020
%by Rigoberto Juarez-Salazar, et. al.

    MNK = size(I);
    if numel(MNK) == 2; MNK = [MNK 1]; end
 
    x = (2*(0:(MNK(2)-1))/(MNK(2)-1) - 1)';
    y = (2*(0:(MNK(1)-1))/(MNK(1)-1) - 1)';
 
    % Bulding the regression matrices
    Xp = zeros(MNK(2),deg+1);
    Yp = zeros(MNK(1),deg+1);
    X2p = zeros(MNK(2),2*deg+1);
    Y2p = zeros(MNK(1),2*deg+1);
    for k = 0:deg
        Xp(:,k+1) = x.^k;
        Yp(:,k+1) = y.^k;
    end
    X2p(:,1:deg+1) = Xp;
    Y2p(:,1:deg+1) = Yp;
    for k = deg+1:2*deg
        X2p(:,k+1) = x.^k;
        Y2p(:,k+1) = y.^k;
    end
 
    % Computing the least-squares inverses
    Ypdag  = (Yp'*Yp)\Yp';
    Xpddag =  Xp/(Xp'*Xp);
    Y2pdag  = (Y2p'*Y2p)\Y2p';
    X2pddag =  X2p/(X2p'*X2p);
 
    Cpk  = zeros(deg+1,deg+1,MNK(3));
    C2pk = zeros(2*deg+1,2*deg+1,MNK(3));

    ha = zeros(MNK);
    for k=1:MNK(3)
        Cpk(:,:,k)  = Ypdag*I(:,:,k)*Xpddag;
        ha(:,:,k)   = Yp*Cpk(:,:,k)*Xp';
 
        C2pk(:,:,k) = Y2pdag*(I(:,:,k) ...
                      - ha(:,:,k)).^2*X2pddag;
    end
 
    if strcmp(mode,'multiple')
        hb = zeros(MNK);
        for k=1:MNK(3)
            hb(:,:,k) = ...
                sqrt(abs(2*Y2p*C2pk(:,:,k)*X2p'));
        end
        bI = sat((I - ha)./hb);
    else
        Cp  = sum(Cpk, 3)/MNK(3);
        C2p = sum(C2pk,3)/MNK(3);
        ha   = Yp*Cp*Xp';
        hb   = sqrt(abs(2*Y2p*C2p*X2p'));
 
        tI = zeros(MNK);
        for k=1:MNK(3)
            tI(:,:,k) = (I(:,:,k) - ha)./hb;
        end
        bI = sat(tI);
    end
end
 
function B = sat(A)
%Saturation function, all entries of the matrix A
%are restricted to be within the interval [-1,1].
    B = A;
    for k=1:size(A,3)
        for j=1:size(A,2)
            for i=1:size(A,1)
                if     A(i,j,k)> 1; B(i,j,k) =  1;
                elseif A(i,j,k)<-1; B(i,j,k) = -1;
                end
            end
        end
    end
end
 
 

(b) Implementation by a Matlab function.

Figure 1.5: Fringe pattern normalization method by using the parameter estimation approach.

Inputs :

� I is a M × N ×K matrix where M × N is the size of each data frame and K is the number of
available frames,

� deg is an integer denoting the polynomial degree used for estimation the background light (by
definition, a 2*deg-th polynomial will be used to estimate the modulation light),

� mode is an string type variable to select between single (default) (by setting mode=‘single’) and
multiple (by setting mode=‘multiple’) estimation modes.
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1.5. Fringe-pattern normalization by the parameter estimation approach
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Figure 1.6: Plot of the saturation function defined by Eq. (1.38). Notice that this function is equal to the
identity function f(x) = x in the interval x ∈ [−1, 1].

Outputs :

� bI is the matrix of normalized fringe-patterns. This matrix has the same size than the input
matrix I.

� ha is the recovered background light.

� hb is the recovered modulation light .

The matrices ha and hb are either M ×N or M ×N ×K matrices depending on if ‘single’ or
‘multiple’ mode estimation was selected, respectively.

� x and y are vectors used to build the lattice where the fitted polynomials were defined.

Below, the functionality of this method is shown by computer simulation and by processing experi-
mental data frames.

1.5.6 | Computer simulation

To show the functionality of the parameter estimation approach for fringe-pattern normalization, a computer
simulation is designed.

Consider the background light, the modulation light, and the phase distribution given, respectively,
by

a(p) = 160− 15x− 15y − 36x2 − 36y2, (1.39a)

b(p) =15 + 8x+ 35x2 − x3 − 30x4

+ 13y + 35y2 − y3 − 30y4,
(1.39b)

ϕ(p) = 35π
x2 − y2

x2 + y2 + ϵ
xy, (1.39c)

for x, y ∈ [−1, 1] and where ϵ is the machine epsilon (the least possible number in finite arithmetic) in order
to avoid a singularity at the point p = (0, 0). The respective plots of the above functions are shown in Figs.
1.7(a)-(c). The resulting fringe-pattern is displayed in Fig. 1.7(d).

Now, the simulated fringe-pattern is processed by the normalization method depicted in Fig. 1.5(a).
The computed background, modulation, and normalized fringe-pattern are shown in Figs. 1.7(e)-(g), re-
spectively. For illustration purposes, Fig. 1.7(h) shows the true normalized intensity, i.e., the cosine of
(1.39c).
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1. Phase modulation and intensity pattern normalization
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Figure 1.7: Simulation results of fringe-pattern normalization by parameter estimation. (a)-(c) Synthetic
background, modulation, and phase distribution, respectively. (d) Simulated fringe-pattern. (e)-(g) Recovered
background light, modulation light, and normalized fringe-pattern, respectively. (h) True normalized intensity
[the cosine of the function in (c)]. (i) and (j) show, respectively, the relative error of background and mod-
ulation estimations. (k) The difference between the normalized fringe-pattern (g) and the true normalized
intensity (h).

From Fig. 1.7, by direct comparison between the plot pairs (a)(e), (b)(f), and (g)(h), we can see that a
successful data processing was performed. Moreover, in order to evaluate the accuracy levels reached by this
normalization method, the plots 1.7(i) and 1.7(j) show the relative error of the background and modulation
estimation. Finally, 1.7(k) shows the difference between the output Ī of the normalization procedure and the
true normalized intensity cosϕ.

1.5.7 | Processing of experimental fringe-patterns

The robustness of this normalization algorithm is tested by processing the experimental fringe-pattern shown
in Fig. 1.8(a). This frame was acquired from a Twymann-Green interferometer. The frame size is of
984× 1071 pixels with a pixel depth of 8-bits in scale gray.

This fringe-pattern was normalized by the described method and the computed background light,
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1.5. Fringe-pattern normalization by the parameter estimation approach

Figure 1.8: Fringe-pattern normalization of an experimental frame. (a) Original acquired fringe-pattern.
(b) and (c) Recovered background and modulation lights, respectively. (d) Resulting normalized fringe-pattern.

modulation light, and the resulting normalized intensity are shown in Figs. 1.8(b)-(d), respectively.

1.5.8 | Application of multiple mode estimation

In the most phase-shifting techniques, it is assumed that the fringe visibility is kept for all fringe-patterns.
However, for some applications this assumption is not valid. An example of this is the electronic speckle
pattern interferometry by using a 4f optical processor [21].

The above referred interferometer induces the required phase shifts by translating laterally to the op-
tical axis a Ronchi ruling on the Fourier plane. Since such a ruling is an amplitude object, it changes the
illumination conditions on the output plane. Accordingly, the acquired fringe-pattern, besides to present a
phase-shifting, they will exhibit a spatio-temporal fringe visibility variation. The problem of phase demod-
ulation from phase-shifted fringe-patterns with spatio-temporal visibility can be addressed by the multiple
estimation mode for fringe-pattern normalization as it is concluded in [22].
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1. Phase modulation and intensity pattern normalization

1.6 | Conclusion

A fringe-pattern normalization method by using the parameter estimation approach was presented. This
method exploits the available information about the spatial structure of the intensity illumination profile.
Thus, a simple algorithm to estimate the background and modulation light components can be derived. This
normalization procedure is fast, robust, and computationally efficient. Moreover, it does not requires user
intervention. Therefore, it could be implemented in automatic applications.
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Chapter 2

Phase demodulation by spatial
carrier

The old scientific method: Here are the facts.
What theory can we draw from them? The
new one: Here’s the theory. What facts can
we find to support it?

Jean-Perre Petit, in The twin universe
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Metrology of extreme physical phenomena is possible by using a spatial carrier. The so-called Fourier
fringe analysis is an important well-stocked arsenal of fringe-pattern processing that exploits the ben-

efits of spatial carriers.

Fourier fringe analysis is the topic of this chapter. It is explained how a spatial carrier is useful to
wrapped phase extraction by using the Fourier transform. The standard Fourier fringe analysis is presented
and its difficulties from filtering are exposed.

Finally, the so-called Fourier fringe-normalized analysis is devised to overcome the filtering problems
exhibited by the original unnormalized version. The simple filtering procedure, higher spatial resolution, and
low computation time benefits of Fourier fringe-normalized analysis allow us to implement it on automatic
real-time applications.

Throughout this chapter, the concepts are illustrated by using several figures and examples. The
computer code in MATLAB software is provided.
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2.1. Introduction

2.1 | Introduction

The Fourier method is a powerful tool used in an important well-stocked arsenal of image processing tech-
niques such as image compression [24] and fringe-pattern analysis to phase demodulation (Fourier fringe
analysis) [3, 25].

In the previous chapter we studied the fringe-patterns modeled by Eq. (1.1), which is reproduced here
for convenience:

Ik(p) = ak(p) + bk(p) cosΦk(p), (2.1)

for k = 0,K − 1 where K is the number of available frames. It was shown that the model (2.1) is valid
regardless of the measurement method used (e.g., interference, and fringe-projection, etc.). It was explained
that, in general, the information of interest is encoded into Φk(p) while both ak(p) and bk(p) contain less
important data about the illumination setup. Accordingly, a normalization method to suppress both ak(p)
and bk(p) was presented.

The problem that still remains is: to extract the phase distribution of interest from normalized fringe-
patterns Īk(p) = cosΦk(p). This seems to have a trivial solution (a inverse cosine of the normalized fringe-
patterns). Unfortunately, the cosine function wraps the phase Φk(p) in an inconvenient way (there is a sign
ambiguity). Therefore, a more advanced techniques for wrapped phase extraction must be employed.

The key idea for wrapped phase extraction is to add a “reference” function into the encoded phase
Φk(p), say

Φk(p) = ϕ(p) + δk(p), (2.2)

where ϕ(p) is the phase function of interest to be recovered and δk(p) is the reference function known as
carrier1. The carrier can be spatial or temporal and, depending on it, two main approaches for wrapped
phase extraction can be formulated. Namely, the frequency transformation and the phase-shifting approaches.

The phase-shifting approach for wrapped phase extraction [26] uses a temporal carrier which can
be defined as

δk = δ(k). (2.3)

The phase-shifting algorithms requires a set of K > 1 phase-shifted fringe-patters to extract (in a wrapped
format) the phase distribution ϕ(p). This approach is analyzed in the following chapter.

On the other hand, the frequency transformation approach uses a spatial carrier defined by [27]

δ(p) = 2πf0 · p, (2.4)

where f0 = (fx, fy) ∈ ℜ2 is known as the frequency carrier and the symbol [·] denotes the inner product.
Notice that the spatial carrier (2.4) defines a tilted plane perpendicular to the vector [fx fy −1]T = [f0 −1]T

or [−f0 1]T . This chapter is devoted to the study of this approach.

Since this approach was devised by Mitsuo Takeda [27], it is commonly referred to as Takeda’s method.
In other references, this fringe analysis approach is also known as Fourier transform method for fringe-
pattern analysis or simply as Fourier transform method [28]. When the filtering is performed by using a
simple rectangular window, the method is referred to as standard Fourier transform method. Since the use
of a tilted plane as a carrier function generates a convenient frequency transformation (a translation of the
interest spectrum), this method is also known as frequency transformation method. In this thesis, the term
Fourier fringe analysis will be used.

1The example 2 in chapter 1 shows that, for the case of interference fringes, the carrier phase δk(p) is the phase provided
by the reference beam. Therefore, the carrier phase is controlled by the reference arm of the interferometer (e.g., translating or
tilting the reference mirror). In the case of fringe-projection, the carrier phase is controlled by the projected grating.
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2. Phase demodulation by spatial carrier

2.2 | Fourier fringe analysis

Unlike the phase-shifting approach, the wrapped phase extraction by frequency transformation requires only
a single fringe-pattern [K = 1 in Eq. (2.1)]. Therefore, hereafter, the variable k is not written down for
brevity.

The particular structure of the carrier (2.4) can be exploited by using the shift theorem of the Fourier
transform. This allows us to extract the function ϕ(p) in (2.2) by using the Fourier transform.

Theorem 1 (Fourier transform shift theorem). If Ff(p) = F (u) is the Fourier transform of f(p),
then, for the constant vector p0,

Ff(p− p0) = F (u)e−j2πp0·u. (2.5)

This is, shifting the origin of the coordinate system relative to a given function introduces a linear
phase factor in the spatial frequency domain. The opposite is true as well due to the symmetry of the
Fourier transform operation:

Ff(p)e−j2πp0·u = F (u+ p0). (2.6)

The theorem 1 justifies the use of the Fourier transform to process fringe-patterns with the aim of to
extract the encoded phase distribution (in wrapped format). This is explained as follows.

By using the Euler’s formula, the cosine function can be written in the complex form as

cosx =
1

2
eix +

1

2
e−ix. (2.7)

Accordingly, the equation (2.1) can be restated as

I(p) = a(p) + b(p) cos[ϕ(p) + 2πf0 · p]

= a(p) +
1

2
b(p)eiϕ(p)+i2πf0·p +

1

2
b(p)e−iϕ(p)−i2πf0·p,

= a(p) +
1

2
b(p)eiϕ(p)ei2πf0·p +

1

2
b(p)e−iϕ(p)e−i2πf0·p,

= a(p) + c(p)ei2πf0·p + c∗(p)e−i2πf0·p,

(2.8)

where c(p) = b(p) exp[iϕ(p)]/2, i2 = −1, and the asterisk [∗] denotes complex conjugate. Notice that the
complex number c(p) contains the phase distribution of interest ϕ(p) as its argument. Since the Fourier
transform is a linear operator, it can be applied to each term in the last equality in (2.8). Moreover, the
theorem 1 is applicable by the equation (2.6). Therefore, the Fourier transform of (2.8) is

I(µ) = A(µ) + C(µ− f0) + C∗(µ+ f0), (2.9)

where the capital letters represent the Fourier spectrum and µ = (µx, µy) is the spatial frequency coordinate.
From Eq. (2.9) is explicit the translation, in the Fourier space, which suffer the spectrum C and C∗ by the
spatial carrier f0.

Roughly speaking, in the Fourier plane, the spectrum I(µ) has three lobes: the spectrum A(µ) at the
origin, and the symmetric lobes C and C∗ centered at −f0 and +f0, respectively.

Since the complex number c(p) (or its conjugate) has the information of interest, the aim is to isolate
the spectrum C(µ − f0) and translating it by f0 toward the origin to obtain C(µ). Then, by computing
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2.3. Fourier fringe-normalized analysis

its inverse Fourier transform, the complex number c(p) is recovered. Finally, the extraction of the wrapped
version of the phase of interest ϕ(p) is obtained as the argument of c(p).

This procedure is depicted by the block diagram shown in Fig. 2.1. By assuming that the fast Fourier
transform algorithm (FFT) is available (as it is the case for the MATLAB platform), the implementation
this described method is easy as shows Fig. 2.2. The example 5 illustrates how the Fourier fringe analysis
works.

IFT	  
φwI

F	  FT	  
Espectrum	   Filtered	  spectrum	  

A	  

C*(µ + f0 ) C(µ − f0 )
A(µ)

C(µ)

Figure 2.1: Visual block diagram description of the Fourier fringe analysis. (FT) Fourier transform. (F)
Filtering. (IFT) inverse Fourier transform. (A) Argument.

The essential step in this procedure is the so-called spectral filtering which consist on the correct
isolation of the spectrum C(µ− f0) or C

∗(µ+ f0) from I(µ) [29]. The most evident problem is the presence
of the zero order spectrum A(µ) because it can be overlapped with either of C or C∗. This problem is
addressed later in this chapter by the so-called Fourier fringe-normalized analysis [28, 30].

Example 5. Let the background light, modulation light, and phase distribution given, respectively, by

a(p) = 160− 15x− 15y − 36x2 − 36y2,

b(p) = 15 + 8x+ 35x2 − x3 − 30x4

+ 13y + 35y2 − y3 − 30y4,

ϕ(p) = 5 · peaks(512),

(2.10)

for the domain x, y ∈ [−1, 1], and where peaks(·) is a function defined in MATLAB software [31].

Figs. 2.3(a)-(c) show the respective plots of (2.10). For comparison reasons, Fig. 2.3(d) shows
the wrapped version of ϕ obtained as arctan[(sinϕ)/(cosϕ)]. The resulting fringe-pattern by using the
carrier frequency f0 = (20, 0) [cycles per length unit] is shown in Fig. 2.3(e) and its respective Fourier
spectrum in Fig. 2.3(f). Fig. 2.3(g) shows the spectral lobe C(µ + f0) translated toward the origin
and Fig. 2.3(h) shows the argument of its inverse Fourier transform. With this, the wrapped phase
was recovered as it can be seen by comparison with Fig. 2.3(d).

2.3 | Fourier fringe-normalized analysis

The essential in wrapped phase extraction by the Fourier method is the filtering procedure [29]. It consist
on the separation (on the frequency domain) of the desired information from others unwanted spurious
contributions such as the background component, the modulation component, and the random noise, among
others [29, 32, 33]. In the Fourier transform plane, the unwanted background and modulation components
are represented as a peak in the origin, i.e. the zero-order spectrum; the desired information is represented
as a peak function centered at the carrier frequency (and its conjugate), i.e. the first-order spectrum; also,
because the noise is generally of high frequency, it is represented by the higher-order spectrum [3].
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2. Phase demodulation by spatial carrier

function [phi ftF ft] = FourierFA(I,f,w,phi0)
%Fourier fringe analysis for fringe-pattern with
%carrier frequency f = [fx fy]. 
%fx  is an integer >= than 0.
%fy is any integer.
%w = [left right top-down] defines the rectangular
%filter.
%phi0 is an initial phase (a real number).
 
[ny nx] = size(I);
 
ft = fftshift(fft2(I)); %Fringe-pattern spectrum
 
fx  = f(1); % x-component of carrier frequency
fy  = f(2); % y-component of carrier frequency
ml  = w(1); % left cutting
mr  = w(2); % right cutting
mtd = w(3); % top-down cutting
 
% Carrier frequency removal
ftf0 = zeros(ny,nx);
if fy > 0
    ftf0( 1:end-fy, fx+1:floor(nx/2+fx)) ...
        = ft(fy+1:end,1:floor(nx/2));
else
    ftf0(-fy+1:end, fx+1:floor(nx/2+fx)) ...
        = ft(1:end+fy,1:floor(nx/2));
end
 
% Spectrum filtering
ftF = ftf0;
if ml > 0; ftF(:,1:ml) = zeros(ny,ml); end
if mr > 0
    ftF(:,floor(nx/2+fx-mr+1):floor(nx/2+fx)) ...
        = zeros(ny,mr);
end
if mtd > 0
    ftF(1:mtd,:) = zeros(mtd,nx);
    ftF(end-mtd+1:end,:) = zeros(mtd,nx);
end

%Inverse Fourier transform
%of the filtered spectrum
iftF = ifft2(fftshift(ftF));
phi  = angle(iftF*exp(1i*phi0));
end

Figure 2.2: Fourier fringe analysis implemented in MATLAB software by the function FourierFA.

A proper band-pass filter is usually applied to perform the filtering procedure because it will retain
the first-order spectrum while both the low frequencies around the zero spectra and the high frequencies due
to noise are filtered out [34]. However, the filter design is not trivial because the Fourier method is highly
dependent on the distribution of the zero- and the first-order spectrums [35,36]. The so-called leakage effect
is a consequence of this dependence.

The leakage effect is the overlapping of two or more orders spectrum [33]. In Fourier fringe analysis, if
the carrier frequency is high and the spectrum is narrow, then the zero- and first-order are well separated from
each other and the leakage effect is avoided [37]. Otherwise, the first-order spectrum cannot be effectively
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Figure 2.3: Computer simulation of the Fourier fringe analysis. (a) Background light. (b) Modulation
light. (c) Phase distribution. (d) Wrapped phase distribution. (e) Resulting fringe-pattern where the used
carrier frequency is f = [20, 0]. (f) Modulus of the Fourier transform of (e). (g) Spectral filtering of (f). (h)
Argument of the Fourier inverse transform of (g).

isolated of the zero-order by a band-pass filter due to the order spectrum overlapping. This causes large error
and can not give correct phase information [38,39]. An illustration of this situation is given in Fig. 2.4(a).
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Figure 2.4: Comparison of the (a) Fourier fringe analysis and the (b) Fourier fringe-normalized analysis
schemes. Notice that, for the Fourier fringe analysis, if the carrier frequency is not sufficiently high, the
orders C(µ − f0) and C∗(µ + f0) are overlapped with the zero order A(µ). Such an undesired situation is
avoided in the Fourier fringe-normalized scheme because the zero order is no longer present.

This problem can be overcome by selecting a higher carrier frequency, but this solution is limited
by the spatial resolution of the detectors [40, 41]. Alternatively, the leakage effect can be reduced to some
degree by using a narrow windows pass-band filter; however the spatial resolution is seriously reduced [42].
To cope with this situation, some advanced filters [35, 43, 44] and several filtering approaches have been
implemented [13,45–52]. However, most of them are computationally complex and/or expensive [53,54].

Like in holographic applications, the leakage spectrum and the reduced spatial resolution problems can
be solved if the zero-order spectrum is suppressed [55–58]. For a fringe-pattern, the zero-order is due to the
background component, mainly. Thus, these components can be determined by either a direct measurement
or an estimation procedure [59]. Finally, by subtracting it from the fringe-pattern, the zero-order is eliminated
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2. Phase demodulation by spatial carrier

as shows Fig. 2.4(b).

Several methods for zero spectra suppression have been proposed. Some of them are the phase shifting
methods [?, 32,41,60–64], the addition of consecutive interferograms [65], the complementary interferograms
processing [42], the orthogonal/crossed fringe projection [66,67], the empirical mode decomposition [68], the
color fringe projection [69], and the optimization approach [70], among others. In general, the direct measure-
ment of the background and modulation components requires additional measurements or more complicated
systems disabling the method’s ability to cope with real-time situations. In contrast, the estimation pro-
cedure of these components only demands a previous image-processing stage: the so-called fringe-pattern
normalization [the red block N in Fig. 2.4(b)].

The fringe-pattern normalization approach consist of the background and modulation lights suppres-
sion. For this, the parameter estimation approach is used because, unlike other methods, it is simple, robust,
user-free, and computationally efficient [71]. Thus, automatic real-time applications can be attended [30].
For more detail about the fringe-pattern normalization topic and, particularly, the parameter estimation
approach, the reader is referred to the chapter 1.

Once the fringe-pattern was normalized, the filter design is not very critical because there is not zero-
spectra anymore. Thus, even the simple half-plane filter can be used. This filter has the additional advantage
that the spatial resolution is maximum for the Fourier method. From now on, the Fourier method applied
to the analysis of normalized fringe-patterns will be referred to as Fourier fringe-normalized analysis.

A Fourier fringe-normalized analysis scheme can be depicted by the block diagram shown in Fig.
2.4(b). It is worth mentioning that this schemes can be built by any fringe-pattern normalization routine and
any Fourier-based method. The benefits of such scheme are verified in this section. For this, the following
proposals are suggested:

1. The fringe-pattern normalization method by parameter estimation. A detailed explanation of this
procedure is exposed in the chapter 1.

2. The standard Fourier fringe analysis by using the simple half-plane filter. This procedure was exposed
in the §2.2 of this chapter.

The above listed stages are described in the following. Next, the feasibility of the suggested scheme is
verified by numerical simulation. Finally this proposal is tested by processing experimental fringe-patterns.
Both numerical and experimental results show that the fringe-pattern normalization approach improves the
standard Fourier fringe analysis.

From now on, in the cases where there is not risk of confusion, the dependences of the spatial variable
p is not written down for brevity.

2.3.1 | Fringe-pattern normalization

The fringe-pattern normalization by parameter estimation exploits the information over the illumination
profile. Specifically, we can represent both the background and modulation light by the Taylor series as

a = ā+ ra,

b = b̄+ rb,
(2.11)

where ā and b̄ are polynomials of degree equal to the desired approximation order, and ra and rb are
its corresponding residual functions. Clearly, if the polynomial models ā and b̄ are accurate, the residual
functions ra and rb will be just noise. So, the background and modulation light can be well approximated
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2.3. Fourier fringe-normalized analysis

by fitting the polynomials ā and b̄ to the fringe-pattern data. Then, with the approximated background and
modulation light, the normalization of (2.8) is carried out as

Ī(p) = sat

(
I − ā

b̄

)
= cos(ϕ+ 2πf0 · p), (2.12)

where the normalized fringe-pattern Ī is bounding to the interval [−1, 1] by the saturation function sat(·).
For more details on this normalization procedure the reader is referred to chapter 1.

Figure 2.5: Simulation results. (a) Background light, (b) modulation light, (c) phase distribution, (d)
wrapped phase distribution. Wrapped phase extraction by using the half-plane filter in the standard Fourier
transform (second row) and the Fourier fringe-normalized analysis (third row).

2.3.2 | Standard Fourier fringe analysis

We use the half-plane filter in the standard Fourier transform method to obtain the wrapped phase distri-
bution from a carried normalized fringe-pattern. For this, we rewrite the normalized fringe-pattern (2.12)
as

Ī(p) = c exp(i2πf0 · p) + c∗ exp(−i2πf0 · p), (2.13)

where 2c = exp[iϕ]. Applying the Fourier transform to Ī of (2.13) we obtain

Ī(µ) = C(µ− f0) + C∗(µ+ f0). (2.14)
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2. Phase demodulation by spatial carrier

It is evident by comparing (2.9) and (2.14) that, in this fringe-normalized scheme, the filtering procedure is
not very critical because the zero order [the spectrum A(µ) associated with the background light a(p) in Eq.
(2.8)] is not present.

The simple half-spectrum filter is applied to carried out the filtering procedure. The selected spectrum
is translated by f0 on the frequency coordinate system toward the origin to obtain C(µ). Then, the complex
function c(p) is obtained by applying the inverse Fourier transform to C(µ). Finally, the wrapped phase
distribution is recovered as the argument of c(p). This procedure is depicted by the block diagram shown in
Fig. 2.4(b).

The functionality of this algorithm is illustrated by a computer simulation. Then, the scheme’s feasi-
bility is examined by processing experimental fringe-patterns.

2.3.3 | Computational simulation

Consider the background light, modulation light, and phase distribution given in (2.10). The respective plots
are shown in Fig. 2.5(a)-(d). Considering the carrier frequency f = (14, 0) [cycles per length unit] and an
additive Gaussian noise with σ(5%), the resultant fringe-pattern, given by (2.8), is shown in Fig. 2.5(e).

Now, the simulated fringe-pattern shown in Fig. 2.5(e) is processed by using the half-plane filter in
both the standard Fourier fringe analysis and the fringe-normalized version in order to compare their results.
Thus, Figs. 2.5(f)-(h) show the module of Fourier spectrum, the filtering procedure, and the recovered
wrapped phase, respectively, obtained by using the standard method. On the other hand, Figs. 2.5(i)-
(l) show the normalized fringe-pattern, the module of Fourier spectrum, the filtering procedure, and the
recovered wrapped phase, respectively, obtained by using the suggested Fourier fringe-normalized analysis
scheme. It is evident from Figs. 2.5(f) and 2.5(j) that the zero-order spectrum suppression is satisfactory.
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Figure 2.6: Simulation results. Error’s histogram of the standard Fourier transform method (M1), and the
Fourier fringe-normalized analysis (M2).

The direct comparison of the last column of Fig. 2.5 reveals that the normalization approach provides
the best result. Moreover, Fig. 2.6 shows the error’s histogram where such conclusion is verified as follow.
The horizontal-axis specifies the error value in radians and the vertical-axis is the normalized frequency. The
curves (M1) and (M2) in Fig. 2.6 correspond to frequency per error value both of the standard Fourier
transform method and the suggested scheme, respectively. From this plot we can see that the proposal (M2)
have a higher frequency for errors around to zero radians while the standard Fourier transform (M1) has
a more uniform error frequency distribution. Clearly the zero-rad error of the standard Fourier transform
method (M1) is less frequent because this method have a higher frequency for error around to ±π/2 rad.
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2.3. Fourier fringe-normalized analysis
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Figure 2.7: Phase-shifted interferograms used to obtain an experimental baseline wrapped phase distribution.
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Figure 2.8: Wrapped phase distribution obtained from the fringe-patterns shown in Fig. 2.7 by the general-
ized phase-shifting algorithm presented in §3.4.

2.3.4 | Experimental validation

Twymann-Green Interferometer

The feasibility of the suggested Fourier fringe-normalized scheme was examined by an optical experiment
using a Twymann-Green Interferometer illuminated with a He–Ne laser source. A deformed wavefront was
generated by inserting a transparent material in the test arm. The fringe-patterns was recorded with a
Gray-scale 8-bit CCD camera and a resolution of 780× 1080 pixels.

A wrapped phase reference was obtained by using the generalized phase-shifting algorithm [71] (it
will be presented in the following chapter). This algorithm was employed to process the four phase shifted
fringe-patterns shown in Fig. 2.7. The obtained wrapped phase is shown in Fig. 2.8. We have used this
phase data as a baseline.

Next, a carried fringe-pattern was obtained by tilting the reference mirror of the interferometer. The
captured fringe-pattern is shown in Fig. 2.9(a). As in the computational simulation, the advantages of the
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2. Phase demodulation by spatial carrier

Figure 2.9: Experimental results. Wrapped phase extraction by using the half-plane filter in the standard
Fourier transform (first row) and the Fourier fringe-normalized analysis (second row). (1st column) Fringe-
pattern to be processed, (2nd column) Fourier spectrum (logarithm view), (3rd column) filtering, and (4th
column) recovered wrapped phase.

normalization approach are highlighted by comparison between the results obtained using the half-plane filter
in both the standard Fourier transform method, Figs. 2.9(a)-(d), and the Fourier fringe-normalized analysis,
Figs. 2.9(e)-(h).
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Figure 2.10: Experimental results. Histogram of error in the standard Fourier transform method (M1), and
the Fourier fringe-normalized analysis (M2).

Similar to the simulation case, the best result is obtained from the normalization approach. This is
evident by the direct comparison of the Fig. 2.8 with the last column of Fig. 2.9. The error’s histogram
shown in Fig. 2.10 verify this claim. For the Fourier fringe-normalized analysis, Fig. 2.10(M2), the frequency
per error value around to zero-rad is higher while the error value around to ±π rad is near zero. In contrast,
for the standard Fourier transform method, Fig. 2.10(M1), the frequency per error value around to zero-rad is
lower and the frequency components around to ±π rad is higher with respect to the normalization approach.
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2.4. Conclusion

Figure 2.11: Experimental results. Wrapped phase extraction by using the half-plane filter in the Fourier
fringe analysis (1st row), and the Fourier fringe-normalized analysis (2nd row). (1st column) Fringe-pattern
to be processed, (2nd column) logarithm view of the Fourier spectrum, (3rd column) filtering, and (4th column)
recovered wrapped phase.

Fizeau Interferometer

Another experiment is performed by evaluating a fringe-pattern obtained from a Fizeau interferometer by
testing a concave mirror. A 404× 392 pixel frame was recorded with a Gray-scale 8-bit CMOS camera. The
captured fringe-pattern is shown in Fig. 2.11(a).

Figs. 2.11(a)-(d) show the results obtained when the Fourier fringe analysis by using the half-plane
filter is applied to the original fringe-pattern. On the other hand, Figs. 2.11(e)-(h) show the respective
results when the fringe-pattern normalization is performed. It can be seen that the normalization procedure
is successful to zero-order suppression [compare the Fig. 2.11(b)(f) pair]. Similar to the previous cases, the
best result is obtained from the Fourier fringe-normalized approach.

It is worth mentioning that the zero-order suppression justify the fact that the simple half-plane filter
is sufficient to carrier out the filtering procedure from a normalized fringe-pattern as shows Fig. 2.11(g).

2.4 | Conclusion

The Fourier fringe-normalized analysis is a more advanced technique which adopt a fringe-pattern normal-
ization stage as a data pre-processing. By the normalization approach, the spectrum leakage is avoided
and the filtering procedure is less critical because the zero order spectrum is removed. Thus, the Fourier
fringe-normalized analysis provides desirable benefits such as a major accuracy, maximum spatial resolution,
increased robustness, faster execution speed, and a simple filtering procedure.

The Fourier fringe-normalized analysis has not been fully exploited because the most of the current
fringe-pattern normalization methods are not satisfactory. To overcome this obstacle, the robust and faster
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2. Phase demodulation by spatial carrier

fringe-pattern normalization method by parameter estimation, appropriate to real-time applications was
suggested.

When the Fourier fringe-normalized analysis is used, the simple half-plane filtering is sufficient to
obtain good results. It was tested by processing both synthetic and experimental fringe-patterns. With the
obtained results, the benefits of fringe-pattern normalization approach for Fourier fringe analysis are verified.
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Chapter 3

Phase demodulation by temporal
carrier

I think that it is a relatively good
approximation to truth —which is much too
complicated to allow anything but
approximations— that mathematical ideas
originate in empirics.

John Von Neumann
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The phase-shifting methods for wrapped phase extraction provide high precision, maximum spatial reso-
lution (point-wise), low sensitivity to noise, among other good desired properties.

The use of a temporal carrier for wrapped phase extraction originates the so-called phase-shifting tech-
niques. This chapter presents a brief review of the most common phase-shifting algorithms. The concepts of
standard, extended, and generalized phase-shifting are explained. Also, the homogeneous and inhomogeneous
phase shifts terms are defined.

Two generalized phase-shifting algorithms to address homogeneous as well as inhomogeneous phase
shift are devised. Such algorithms can work from only two or more frames with spatio-temporal fringe
visibility variation. These algorithms are user-free, computationally efficient, and robust. Thus, they can be
implemented in real-time applications. Many figures and some examples are employed to illustrate several
concepts and algorithms. The used computer codes, written in MATLAB software, are provided.
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3.1. Introduction

3.1 | Introduction

In previous chapter, the Fourier transform method to extract (in wrapped format) the encoded phase dis-
tribution was presented. One of the most important features of this approach is the requirement of a single
fringe-pattern of the form

I(p) = a(p) + b(p) cos[ϕ(p) + δ(p)],

where the so-called spatial carrier δ(p) is defined as

δ(p) = 2πf · p

with f being the frequency carrier. This single fringe-pattern requirement is an important property because
dynamical extreme physical phenomena can be measured [25].

However, the frequency transform approach suffers of sign ambiguity (if the carrier frequency f is not
high enough) and a reduced bandwidth due to the need of a high carrier frequency and the spectrum filtering.
Such drawbacks are overcome by using a temporal carrier. The use of temporal carriers to wrapped phase
extraction originates the so-called phase-shifting techniques. In this chapter, this topic is tackled.

3.2 | Phase-shifting techniques

Phase-shifting techniques are an important toolbox for extracting the wrapped phase from a set of phase-
shifted fringe-patterns [3,72,73]. In general, a phase-shifting algorithm requires a set of K > 1 frames of the
form

Ik(p) = ak(p) + bk(p) cos[ϕ(p) + δk(p)], (3.1)

for the discrete temporal variable k = 0,K − 1, where K is the number of available frames, Ik(p) is the
recorded intensity distribution, p = (x, y) is a two-dimensional spatial variable, ak(p) is the background light,
bk(p) is the modulation light, ϕ(p) is the phase function of interest to be recovered, and δk(p) is the temporal
carrier (phase shift) function1.

The phase-shifting techniques are mainly classified by the type of phase shift function involved an the
a priori knowledge about it.

Phase shift a priori knowledge

The choice of a phase-shifting algorithm depends, first, on if the phase shift is known or an unknown.

Phase shift function type

The phase shift functions can be classified in four types formed by considering spatial dependence and linearity
as shows Fig. 3.1.

� Spatially non-dependent or homogeneous. We say that the phase shift function is homogeneous if it has
the same value in the whole frame. In other words, a homogeneous phase shift is represented by
temporal function only.

1In the literature, the term “phase shift” is commonly used instead of “temporal carrier”. The former term will be used
along this work in order to avoid the conceptual conflict if both temporal and spatial dependence of δk(p) is considered.
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Figure 3.1: Phase shift function types. Homogeneous phase shift: (a) linear, and (b) nonlinear on k.
Inhomogeneous phase shift: (c) linear, and (d) nonlinear on p. For the inhomogeneous case, nonlinearity
dependence on k is assumed in advance.

� Spatially dependent or inhomogeneous. An inhomogeneous phase shift exhibits a phase variation
which depend on both time and space.

The above listed groups are further classified on linear and non-linear.

Notice that for the homogeneous case, the linear and non-linear groups are defined with respect to the
discrete temporal variable k. On the other hand, for the inhomogeneous case, the linearity criteria should
be applied with respect to k and the spatial variable p. However, here it is assumed that the phase shift is
nonlinear on k and the linearity criteria is referred to the spatial variable. This classification of phase shift
functions is depicted in Fig. 3.1.

The earlier phase-shifting algorithms were proposed for homogeneous phase shift functions2. The
homogeneous phase shift can be linear or non-linear, and it can be known a priori or an unknown. Thus,
the phase-shifting techniques are classified in standard, extended, and generalized. This classification is
summarized in Table 3.1 and illustrated in Fig. 3.2. Later in this section these algorithms will be described.

2Since the phase-shifting concept was devised for phase extraction by using temporal carriers (analogous to the frequency
transform approach by using spatial carriers), phase-shifting is only applicable for the case of homogeneous phase shift. Thus,
strictly speaking, the use of inhomogeneous phase shifts should be attended by a sort of hybrid between the frequency transform
and the phase-shifting approaches. However, in this work such a distinction is not performed.
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3.2. Phase-shifting techniques

Homogeneous phase shift type
Phase-shifting Dependence on k Unknown

Standard Linear No
Extended Non-linear No
Generalized Non-linear Yes

Table 3.1: Classification of phase-shifting techniques depending on the properties of the phase shift function.
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Figure 3.2: Block diagram of (top) the standard, (middle) extended, and (bottom) generalized phase-shifting
methods.

In the following sections, the concepts of phase shift and phase steps will be frequently used. Therefore,
it is convenient to present the definition of these terms.

Definition 1 (Phase step and phase shift). From the phase-shifted fringe-patterns (3.1), the encoded
phase ϕ(p) + δk(p) is composed of two parts: the static part ϕ(p) and the dynamical one or phase
shift δk(p) as shows Fig. 3.3. Thus, it is convenient to use the time derivative of the encoded phase
because static and dynamic parts are separated. This leads to the concept of phase step αk(p).

The phase step is defined as the time derivative of the encoded phase (or the phase shift) as

αk(p) :=
d

dk
[ϕ(p) + δk(p)] =

d

dk
δk(p). (3.2)

Hence, the phase shift δk(p) is computed from the phase step by

δk(p) = δ0 +

∫ k

0

αℓ(p) dℓ, (3.3)

where δ0 is an initial reference phase or phase offset.
Because in this work the variable k is discrete, the corresponding equations of (3.2) and (3.3) are

the following finite differences and cumulative sum:

αk(p) = δk(p)− δk−1(p), (3.4)

δk(p) = δ0 +

k∑
ℓ=1

αℓ(p), (3.5)

where ∆k = ∆ℓ = 1 was assumed.
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Figure 3.3: From a set of phase-shifted fringe-patterns modeled by Eq. (3.1), the interest phase distribution
ϕ(p) and the phase shift δk(p) can be determined, respectively, as the dynamic and static parts of the encoded
phase Φk(p) = ϕ(p) + δk(p).

3.2.1 | Standard phase-shifting

The standard phase-shifting approach relies mainly on three assumptions [26]:

1. The background and modulation functions are equal in all fringe-patterns; i.e., they are not dependent
on k.

2. The phase shift function is homogeneous and linear on k, Fig. 3.1(a). This is, all phase steps are equals
(the phase shift function is a set of non-tilted planes).

3. The phase shift function must be known a priori.

Mathematically, the standard phase-shifting approach considers a simplified version of (3.1), namely

Ik(p) = a(p) + b(p) cos[ϕ(p) + δk], (3.6)

with the phase shift

δk = αk + α0, (3.7)

where α ∈ (0, 2π) is the phase step, and α0 is a phase offset.

The K-step algorithms [26] (also known as k-bucket) are associated with the standard approach.
Computationally, this approach is the most efficient. Unfortunately, the requirement of a linear and known
phase shift is a serious restriction. To satisfy this requirement, expensive shifter devices are necessary to
generate with high accuracy “nominal” phase values (for example 0, π/2, π and 3π/2 rad for the 4-step
method). Moreover, calibration procedures are unavoidable [?,?, 74].

3.2.2 | K-step phase-shifting methods

The methods where all phase steps are equals to

α = 2π/K, (3.8)
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3.2. Phase-shifting techniques

with K ≥ 3 and α0 = 0, are known as K-step phase-shifting methods3 [26, 75]. The most common K-step
methods are the cases K = 3 and K = 4.

3-step phase-shifting method

In this method, the acquired fringe patterns (3.6) are

I1 = a+ b cosϕ,

I2 = a+ b cos (ϕ+ 2π/3)

= a+ b cosϕ cos
2π

3
− b sinϕ sin

2π

3

= a− 1

2
b cosϕ−

√
3

2
b sinϕ,

I3 = a+ b cos (ϕ+ 4π/3)

= a+ b cosϕ cos
4π

3
− b sinϕ sin

4π

3

= a− 1

2
b cosϕ+

√
3

2
b sinϕ.

(3.9)

The background light can be removed using the following subtractions:
√
3(I3 − I2) = 3b sinϕ

2I1 − I2 − I3 = 3b cosϕ.
(3.10)

Thus, the phase ϕ can be obtained by

tanϕ =

√
3(I3 − I2)

2I1 − I2 − I3
. (3.11)

On the other hand, the background light a can be obtained from Eqs. (3.9) as

a =
1

3
(I1 + I2 + I3) . (3.12)

Similarly, the modulation light b can be obtained from Eqs. (3.10) as

b =
1

3

√
3(I3 − I2)2 + (2I1 − I2 − I3)2 (3.13)

4-step phase-shifting method

In this method, the acquired fringe patterns (3.6) are

I1 = a+ b cosϕ,

I2 = a+ b cos

(
ϕ+

1

2
π

)
= a− b sinϕ,

I3 = a+ b cos

(
ϕ+ π

)
= a− b cosϕ,

I4 = a+ b cos

(
ϕ+

3

2
π

)
= a+ b sinϕ,

(3.14)

3Notice that this particular phase shift is uniformly distributed in the interval [0, 2π). This is a key property for the efficiency
of this methods. This uniformity is required in other fringe-pattern processing procedures such as the intensity normalization
by the max–min method [?].
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3. Phase demodulation by temporal carrier

where the dependence on p was removed from I(p), a(p), b(p), and ϕ(p) for brevity. The background light
can be removed using the following subtractions:

I4 − I2 = 2b sinϕ,

I1 − I3 = 2b cosϕ.
(3.15)

Thus, the phase distribution ϕ can be obtained by

tanϕ =
I4 − I2
I1 − I3

. (3.16)

The background light a can be obtained easily from Eqs. (3.14) as

a =
1

4
(I1 + I2 + I3 + I4) . (3.17)

Similarly, the modulation light can be obtained from Eqs. (3.15) as

b =
1

2

√
(I4 − I2)2 + (I1 − I3)2. (3.18)

The extended phase-shifting technique is preferred because it relieves the experimental difficulties by
the possibility of handle arbitrary phase shift functions as will be seen below.

3.2.3 | Extended phase-shifting

In general, a linear phase shift is not guaranteed due to many experimental difficulties [76, 77]. Moreover,
some experimental setups generates non-linear phase shifts such as the quadratic phase shift induced by
lateral displacement of the light source [23].

In the early 80’s, were applied techniques such as the generalized data reduction and the least-squares
method for wrapped phase extraction [78, 79]. Such methods relieves the constraint of linearity of the
phase shift δ imposed by the standard phase-shifting. These techniques does not requires a particular phase
shift. Therefore, the difficult (impossible) task of generating a particular phase shift by the optical setup is
diminished. Instead, it is necessary to determine somehow the phase shift which the experimental setup has
generated.

For the extended phase-shifting approach, the fringe-patterns are modelled by (3.6), but the more
general phase shift

δk = δ(k) with αk ∈ [−π, π), k = 1,K − 1, (3.19)

is supported. The extended phase-shifting approach exploits the fact that the set of K frames (3.6) can be
rewrite as the linear equations system:  I0(p)

...
IN−1(p)

 = A

a(p)ξ(p)
ζ(p)

 , (3.20)

where ξ(p) = b(p) cosϕ(p), ζ(p) = b(p) sinϕ(p), and the system’s matrix A is given by

A =


1 cos δ0 − sin δ0
1 cos δ1 − sin δ1
...

...
...

1 cos δN−1 − sin δN−1

 . (3.21)
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3.2. Phase-shifting techniques

It is possible to solve the equations system (3.20) for a, ξ, and ζ. For this, the criteria most widely used is
the least-squares [79]. By least-squares inversion of A, the quantities a, ξ, and ζ are obtained. Then, the
phase distribution of interest ϕ(p) (in wrapped format denoted by ϕw(p)) is computed by the relation

tanϕ(p) = ζ(p)/ξ(p). (3.22)

The example 6 illustrates this method.

Example 6. Let a(p), b(p), and ϕ(p) be the functions defined in (2.10). Let the phase shift be

δk = 0, π/4, −5π/4,

for k = 0, 2, respectively, as shows Fig. 3.4(a). The resulting phase-shifted fringe-patterns are shown
in Fig. 3.4(b)-(d). In this case, the system’s matrix (3.21) is

A =

1 1 0

1 1/
√
2 −1/

√
2

1 −1/
√
2 −1/

√
2

 .
The equation (3.20) is solved as a(p)ξ(p)

ζ(p)

 = A†

I0(p)I1(p)
I2(p)

 ,
where, since A is a square non-singular matrix, the least-squares inverse A† is equal to the usual
inverse matrix A−1:

A† = A−1 =

 1 −1/
√
2 1/

√
2

0 1/
√
2 −1/

√
2√

2 −1− 1√
2

1− 1√
2

 .
Therefore,

a(p) = I(p, 0) + [I(p, 2)− I(p, 1)]/
√
2,

ξ(p) = [I(p, 1)− I(p, 2)]/
√
2,

ζ(p) =
√
2I(p, 0)− I(p, 1) + I(p, 2)

−[I(p, 1) + I(p, 2)]/
√
2.

The obtained functions a(p), ξ(p), and ζ(p) are shown in Fig. 3.4(e)-(g), respectively. Finally, Figs.
Fig. 3.4(h) show the wrapped phase computed by

ϕw(p) = arctan[ζ(p)/ξ(p)].

Notice that this result is equal with the exact wrapped phase shown in Fig. 2.3(d).

It is worth mentioning that, although a nonlinear phase shift is supported4, it must be known a
priori. There are methods to determine the phase shift by using additional information. The phase-shifting
techniques which includes a dedicated stage to compute the phase shift from the provided fringe-patterns are
known as generalized phase-shifting techniques.

4In general, for the extended phase-shifting technique, the phase shift can be arbitrary always that A in (3.20) is of maximum
range.
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Figure 3.4: Simulation of the extended phase-shifting method. (a) Discrete phase shift (k = 0, 1, 2). An
interpolated curve is presented for visualization purposes. (b)-(d) Simulated fringe-patterns and its respective
phase shift. (e)-(g) Computed functions a, ξ, and ζ. (h) Recovered wrapped phase.

3.2.4 | Generalized phase-shifting

In both standard and extended phase-shifting approaches, the phase shift must be known a priori. For
this, the phase shifter devices such as piezoelectric materials must be calibrated. However, it is difficult to
determine the phase shift even from well calibrated equipment because there are many other experimental
error sources [76,77].

To overcome the above referred problems, the generalized phase-shifting interferometry (GPSI) was
proposed [80]. The GPSI schemes include a dedicated stage for the phase shift estimation. Thus, the need
of to calibrate the equipment is eliminated. Moreover, the resulting algorithms are robust against several
experimental error sources. Accordingly, the high quality requirements for the phase shifter devices are so
demanding; i.e., the expensive and complex phase shifters can be substituted by other more simple and cheap
ones [23].

Error sources in phase-shifting

Any phase-shifting method is influenced by many error sources. They arise by instability of
intensity and/or frequency of the illumination source, multiple reflected beams, irregular re-
flectance/transmittance of the object, miscalibration of the phase shifters, mechanical vibrations,
turbulences and temperature gradients in the environment, nonlinearitiesa of the actuators (e.g.,
piezoelectric materials) and detectors (for instance, the gamma curve), quantization, and so on [76,77].

aSome of the most common nonlinearities are the bias (linear, quadratic, cubic, etc.), hysteresis, and saturation.

The generalized phase-shifting approach does not explicitly require knowing the phase shift function.
This approach includes a stage dedicated to the estimation of the phase shift. The Carrè algorithms may
be the first phase-shifting techniques in this category [81,82]. However, they are restricted to the case when
the phase shift function is homogeneous and linear on k. In other words, the phase shift must be non-tilted
planes separated one from another by a constant distance as shown in Fig. 3.1(a).
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3.2. Phase-shifting techniques

Example 7 (Carrè’s methods). The Carrè’s methods [81], before of compute the wrapped phase
distribution, compute the unknown phase step α ∈ (0, π). This makes these methods are self-adjustable
to the (linear) phase shift. This is the most important property of these methods in experimental
applications.

Another case is when the phase shift is homogeneous but is a nonlinear function of k as shown in Fig.
3.1(b). The most generalized phase-shifting algorithms fall into this group [46,71,80,83–86].

In some optical setups, it is difficult to keep a homogeneous phase shift. For example, the translation
of the reference mirror of an interferometer cannot be exactly perpendicular to the optical axis [87–89]. For
this case, the phase shift function consists of a set of tilted planes as shown in Fig. 3.1(c). Interesting schemes
to solve this problem have been developed [90–93].

Due to the development of advanced technologies (e.g. liquid crystal spatial light modulators) and
versatile experimental designs [20, 23], the requirements of phase-shifting algorithms have increased. Par-
ticularly, it is necessary to process fringe-patterns with unknown inhomogeneous phase shifts that depend
on both p and k in a nonlinear way as shown in Fig. 3.1(d) [94]. Additionally, other desirable properties
for phase-shifting techniques are: a reduced number of necessary fringe-patterns, and the capacity to handle
spatio-temporal visibility (i.e. the background and modulation lights are functions of both p and k) [95].

At this point, an apparent problem arises. If an arbitrary phase shift (changing spatially and temporally
in an unknown manner) is assumed, it introduces an extra fringe-pattern. The extra fringe-pattern can cause
confusion regarding what part of the encoded phase belongs to the interest phase distribution and what part
belongs to the phase shift. Moreover, conceptually, the phase shift is a necessary “reference phase” useful
for wrapped phase extraction. Therefore, as an arbitrary phase shift is no longer a “reference”, the phase
extraction in the mentioned conditions could be out of the phase-shifting framework.

In order to address this situation, the phase-shifting concept is stated as follows. In phase-shifting, the
phase distribution of interest ϕ(p) is equal in all fringe-patterns, and the phase shift δk(p) varies from one to
another. In other words, ϕ(p) and δk(p) are, respectively, the static and dynamic parts of the encoded phase
as can be seen in Fig. 3.3.

Indeed, for the continuous case, by applying the derivative of the encoded phase with respect to k, the
interest phase distribution is suppressed and the remainder is the phase step αk(p) defined by (3.2). Then,
the phase shift is reconstructed by (3.3). Finally, the interest phase distribution ϕ(p) is recovered by using
the computed phase shift δk(p). So the functions ϕ(p) and δk(p) are clearly distinguished from one another
(even when δk(p) is nonlinear unknown function of both p and k) and the phase computing is possible in the
context of phase-shifting5. This explanation is valid for the discrete case.

Since early 1990, many researches have focused their effort to improve the GPSI scheme. The current
GPSI advances can be classified by the approach in: Fourier transform, elliptical curve fitting, statistical,
spatio-temporal, iterative, and optimization [46,85]. A briefly description is given below.

Fourier transform. Perhaps, Lai and Yatagai [80] were the first to use an spatial carrier for to determine
the temporal one in a generalized phase-shifting experiment. This method consists on the generation
of Fizeau fringes by using additional optical setup. The phase shift is obtained by analyzing the Fizeau
fringes by the Fourier transform method [27] (see chapter 2). With the obtained phase shift, the
extended phase-shifting problem is solved.

Elliptical curve fitting. This geometrical approach consists on the evaluation of the Lissajous figures gen-
erated from the intensity values at two or more points of the given fringe-patterns [83, 96]. There are

5The wrapped phase extraction is possible if αk(p) ̸= 0. This is a basic assumption in the phase-shifting approach.
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3. Phase demodulation by temporal carrier

several versions of this approach. An example consist on calibrate the phase steps from the resulting in-
tensity ellipses. A benefit of this technique is the possibility of to use a few points of the fringe-patterns.
However, this lead to a low robustness (i.e., high sensitivity to noise). A robust versions of this method
is by using a forced fit method [97, 98]. However, such a method is limited to process interferograms
with a constant visibility.

Statistical. Several statistical algorithms have been proposed. They determine the actual phase steps from
measured intensities with a statistical-based algorithm [99]. This approach exploits the statistical nature
of the phase distribution to obtain the phase steps in a very precise and stable way [100]. However, its
applications is limited to speckle phase such as holography and phase-retrieval.

Spatio-temporal. In this category is the histogram-based algorithm where the phase difference between two
adjacent frames is analyzed [101]. From the resulting histogram, the phase shift is accurately extracted.

Another alternative is the max-min algorithm [84]. This algorithms performs a comparison of each
pixel in an interferogram with the pixels at the corresponding location of acquired interferograms.
This removes the sensitivity to spatial intensity variations. Then, a comparison of each pixel intensity
with the intensities of two reference pixels within the same interferogram es performed. This approach
does not requires initial guess about the phase distribution (in contrast to the statistical approach)
or additional information (such as the complementary Fizeau interferograms in the Fourier transform
approach). However, the spatio-temporal algorithms are computationally exhaustive because they
require a large number of data frames (N ≥ 15) for reliable operation.

Iterative. In this category is the iterative least-squares technique to extract the phase steps [102]. The
resulting algorithm is immune to nonlinearities and errors due to uncalibrated piezoelectric devices.
However, this algorithm finds only local optimums. Therefore, a good initial guess must be provided.

The above referred drawbacks are overcome by the advanced iterative algorithm reported in [86]. This
algorithm computes the solution by iterating between temporal and spatial domains. Fig. 3.5 shows a
block diagram illustrating this algorithm.

Least-‐squares	   Least-‐squares	  

I I

φw

b(p)a(p), b(t)a(t),
δ(t)

Figure 3.5: Block diagram of the advanced iterative algorithm for generalized phase-shifting interferometry
[86].

In summary, the Fourier transform approach reported in [80] requires additional optical setup to
generate Fizeau fringes. The elliptical curve fitting requires a forced fit method to cope with noisy frames.
The statistical algorithms are very accurate but the computational load is high and a large number of frames
is required. For the iterative approach, an initial guess is necessary and only local convergence is guaranteed.
On the other hand, the noniterative optimization are robust, faster, and, by appropriate constraints, converges
to the desired result.

In the following, a noniterative optimization algorithm for generalized phase-shifting is presented. It
uses the least-squares method to estimate the background light, the modulation light, the phase step, and
the wrapped phase distribution.
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3.3. Least-squares parameter estimation for generalized phase-shifting

3.3 | Least-squares parameter estimation for generalized phase-shifting

In chapter 1 the principle of to use the spatial information about the parameters involved in the fringe-
patterns was exploited for fringe-pattern normalization. Now, such a principle is used here for generalized
phase-shifting.

The parameter estimation principle for generalized phase-shifting allows us to design efficient, fast,
robust, and user-free algorithms able to real-time applications. Other important advantages are the natural
structure to process fringe-patterns with spatio-temporal fringe visibility variation and both homogeneous
and inhomogeneous phase shift.

In this section two generalized phase-shifting algorithms are presented. The first one is very simple
because it was designed to process homogeneous phase shift. The second one is more advanced because
homogeneous as well as inhomogeneous phase shifts can be addressed. Both algorithms can process frames
with spatio-temporal fringe visibility because the normalization stage presented in 1.5 was used.

3.4 | Generalized phase-shifting algorithm for homogeneous phase shift

Unlike other generalized phase-shifting algorithms, the parameter estimation scheme can process fringe-
patterns of the form

Ik(p) = ak(p) + bk(p) cos[ϕ(p) + δk]. (3.23)

for k = 0,K − 1 with K being the number of given frames. Notice that the background and modulation
lights, ak(p) and bk(p) respectively, are functions of both space p and time k. Also, it is worth mentioning that
an homogeneous phase shift δk is assumed. However, more later in this chapter, this parameter estimation
scheme is developed to cope with inhomogeneous phase shifts δk(p) (a function of both space p and time k).

From the phase-shifted fringe patterns (3.23), the following four parameters can be distinguished:

� Background light ak(p),
� Modulation light bk(p),
� Phase shift δk, and
� Phase distribution of interest ϕ(p).

The extraction of the phase distribution (in wrapped format) from a set of K given by (3.23) is, in
general, a nonlinear problem. By exploiting spatial information about the parameters ak(p) and bk(p), it is
possible to divide the original nonlinear problem in a series of four linear problems in cascade [71]. Specifically,
the generalized phase-shifting algorithm by parameter estimation consists of three stages:

1. Fringe-pattern normalization. The background and modulation lights are estimated by the least-
squares polynomial fitting method.

2. Phase shift estimation. The least-squares method is employed to recover the phase steps and then
the phase shift parameter is computed.

3. Wrapped phase extraction. With the computed phase shift function, the wrapped phase distri-
bution is obtained by using the extended phase-shifting approach.

This is the main idea of wrapped phase extraction by parameter estimation that will be described here.

In the following, the algorithm’s principles are explicated. Then, the feasibility of the algorithm
is illustrated by a numerical simulation. Finally, experimental fringe-patterns are processed to show the
usefulness of the proposal. The phase shift estimation quality is verified by comparison with the conventional
ellipse-fitting [96] and the Fourier transform [32] methods.
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3. Phase demodulation by temporal carrier

3.4.1 | Theoretical principles

Fringe pattern normalization

The so-called fringe patter normalization is the procedure of suppression from the given fringe-patterns
both the background and modulation lights. For this, we use the parameter estimation method. It solves
two linear problems in cascade to obtain the normalized version Īk(p) of the frames Ik(p) given by (3.23) as

Īk(p) = cos[ϕ(p) + δk], k = 0,K − 1. (3.24)

For details on this fringe-patterns normalization method, the reader is referred to the chapter 1 or Ref. [71].

Phase shift estimation

The phase shift is obtained by computing the corresponding phase steps. Then, from these phase steps, the
phase shift is reconstructed by the equation (3.5).

There are direct methods to compute the phase steps for the case when normalized fringe-patterns
are available. For example, the average of the absolute value of the phase difference or the histogram phase
difference [101]. These methods obtain the phase steps for each point in the frame and, by applying some
criteria (e.g. average and statistical mode), a single phase step is deduced. However, such methods are
sensitive to random noise and can return multiple solutions.

From the normalized fringe-patterns given by (3.24), to estimate the phase step αℓ from two consecutive
normalized fringe-patterns Īℓ−1 and Īℓ:

Īℓ−1 = cos[ϕ+ δℓ−1],

Īℓ = cos[ϕ+ δℓ−1 + αℓ],
(3.25)

with ℓ = 1, N − 1, we perform the addition and subtraction:

Īℓ−1 + Īℓ = 2 cos
(
ϕ+ δℓ−1 +

αℓ

2

)
cos

αℓ

2
,

Īℓ−1 − Īℓ = 2 sin
(
ϕ+ δℓ−1 +

αℓ

2

)
sin

αℓ

2
.

Then, by using the trigonometric identity sin2(ϕ+ δℓ−1 + αℓ/2) + cos2(ϕ+ δℓ−1 + αℓ/2) = 1, we have(
Īℓ−1 − Īℓ
2 sin αℓ

2

)2

+

(
Īℓ−1 + Īℓ
2 cos αℓ

2

)2

= 1

(Īℓ−1 − Īℓ)
2 + (Īℓ−1 + Īℓ)

2 tan2
αℓ

2
= 4 sin2

αℓ

2
.

Now, by using the identities 2 sin2 x = 1− cos(2x) and tan2 = [1− cos(2x)]/[1 + cos(2x)], we have

(Īℓ−1 − Īℓ)
2 + (Īℓ−1 + Īℓ)

2 1− cosαℓ

1 + cosαℓ
= 2(1− cosαℓ),

or
(Īℓ−1 − Īℓ)

2(1 + cosαℓ) + (Īℓ−1 + Īℓ)
2(1− cosαℓ) = 2(1− cos2 αℓ). (3.26)

Expanding the above equation,

(Īℓ−1 − Īℓ)
2 + (Īℓ−1 + Īℓ)

2 +
[
(Īℓ−1 − Īℓ)

2 − (Īℓ−1 + Īℓ)
2
]
cosαℓ = 2(1− cos2 αℓ),
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3.4. Generalized phase-shifting algorithm for homogeneous phase shift

and simplifying this last expression, we can reach

2(Ī2ℓ−1 + Ī2ℓ )− 4Īℓ−1Īℓ cosαℓ = 2(1− cos2 αℓ)

(Ī2ℓ−1 + Ī2ℓ )− 2Īℓ−1Īℓ cosαℓ = sin2 αℓ,

where for the last equality was applied the identity cos2 αℓ = 1− sin2 αℓ. By simplicity, we restated the last
equation as

Aβℓ +Bℓγℓ = Cℓ, (3.27)

where βℓ = sin2 αℓ, γℓ = cosαℓ, A is an all-ones matrix, Bℓ = 2Īℓ−1Īℓ, and Cℓ = Ī2ℓ−1 + Ī2ℓ , where [·]2 is an
element-by-element square. Next, the system of linear equations (3.27) is solved for βℓ and γℓ by using the
least-squares method as [

βℓ
γℓ

]
= A†

αCℓ, (3.28)

where Aα = [A Bℓ]. The phase step is obtained by

αℓ = arctan

√
βℓ
γℓ

. (3.29)

Once the phase step function was computed, the phase shift δk is obtained by Eq. (3.5).

N	  I I
I 2

I−1
2

Σ
C δ

I

α φw
(i)	   (ii)	  

LSu2 + LS

(a) Block diagram. (N) denotes the normalization stage depicted in Fig. 1.5.

function[Wp,alp,d,bI,a,b,x,y] = GPSbpe(I,deg,mode)
%Generalized phase-shifting algorithm for
%homogeneous phase shift by parameter estimation.
%
%This code is an implementation of the work
%reported in [Optics and Lasers in Engineering,
%Vol. 51(5), pp. 626 - 632 (2013). DOI:
%http://dx.doi.org/10.1016/j.optlaseng.2012.12.020
%by Rigoberto Juarez-Salazar, et. al. 
 
    [bI,a,b,x,y] = FPNorm(I,deg,mode);
    [Wp,alp,d] = WPhaseExt(bI);
end

function [Wp,alp,d] = WPhaseExt(bI)
    MNK = size(bI);
 
    alp = zeros(MNK(3),1);
    A = ones(MNK(1:2));
    for k=2:MNK(3)
        B = 2*bI(:,:,k-1).*bI(:,:,k);
        C = bI(:,:,k-1).^2 + bI(:,:,k).^2;
        
        Th = [A(:) B(:)]\C(:);
        alp(k) = atan2(sqrt(abs(Th(1))),Th(2));
    end
    
    % Obtaining function delta
    d  = cumsum(alp);
    
    % Obtaining the wrapped phase
    AA = [cos(d) -sin(d)];
    Th = AA\reshape(bI(:),prod(MNK(1:2)),MNK(3))';
    Wp = atan2(Th(2,:),Th(1,:));
    Wp = reshape(Wp,MNK(1:2));
end

(b) Implementation in MATLAB.

Figure 3.6: Generalized phase-shifting algorithm for homogeneous phase shift by the parameter estimation
approach. Notice that the computer function FPNorm(), presented in chapter 1, is required.
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Wrapped phase extraction

Now, by using the trigonometric identity cos(x+ y) = cosx cos y − sinx sin y, the normalized fringe-patterns
(3.24) are restated in the form

Īk(p) = cosϕ(p) cos δk − sinϕ(p) sin δk

= ξ(p) cos δk − ζ(p) sin δk.
(3.30)

where ξ(p) = cosϕ(p) and ζ(p) = sinϕ(p). Notice that Eq. (3.30) is linear with respect to the unknowns ξ(p)
and ζ(p). Thus, the system of linear equations (3.30) can be represented in matrix notation as Ī0

...
ĪK−1

 = A†
ϕ

[
ξ
ζ

]
, (3.31)

with

Aϕ =

 cos δ0 sin δ0
...

...
cos δK−1 sin δK−1

 .
The matrix equation (3.31) is solved for ξ and ζ by using the least-squares method [78,79] as

[
ξ
ζ

]
= A†

ϕ

 Ī0
...

ĪK−1

 . (3.32)

Finally, the phase distribution ϕ is obtained (in wrapped format) by solving the equation

tanϕ = −ζ/ξ. (3.33)

Fig. 3.6(a) summaries the above described generalized phase-shifting algorithm. Fig. 3.6(b) shows the
implementation in MATLAB software.

3.4.2 | Algorithm testing

The functionality of this algorithm is tested by a computer simulation (example 8) and by processing exper-
imental fringe-patterns (example 9).

In both the simulation and experimental cases, the parameter estimation approach obtains good results
when two or more noisy fringe-patterns are processed.

The presented results were obtained by using a 2.8 GHz laptop. The computer time required to process
the frames used in examples 8 and 9 (frame sizes of 500× 500 and 600× 800 pixels, respectively) is shown in
table 3.2. In this table another experiment (40 frames of size of 480× 440 pixels) was added with the aim to
show the performance of the algorithm to process many frames.

From table 3.2 it is verified that the generalized phase-shifting algorithm by using the parameter
estimation approach is faster than other similar generalized phase-shifting algorithms.
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3.4. Generalized phase-shifting algorithm for homogeneous phase shift

Number of interferograms
Size (pixels) Two Three Four Forty
500× 500 0.36 0.41 0.46 –
600× 800 0.65 0.76 0.84 –
480× 440 0.31 0.36 0.39 2.21

Table 3.2: Computation time (seconds).
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Figure 3.7: (a)-(d) Simulated fringe-patterns I0 to I3 and the respective phase shift δ. Recovered wrapped
phase by processing the first two (e), three (f), and four (g) fringe-patterns. (h) Exact wrapped phase.

Example 8. Let a(p), b(p), and ϕ(p) be the functions defined in (2.10). Let

δ(k) = 0, 0.5, 1.5, 3.5,

for k = 0, 1, 2, 3 respectively, be the phase shift. Figs. 3.7(a)-(d) show four noisy fringe-patterns
generated by

Ik = a+ b cos[ϕ+ δk] + η(p, k), k = 0, 3,

where η(p, k) is a random zero mean Gaussian noise with standard deviation σ(5%). Figs. 3.7(e)-(g)
show the recovered wrapped phase by processing the first two, three, and four fringe-patterns I0 to I3,
respectively. For comparison purposes, Fig. 3.7(h) shows the exact wrapped phase.

The quality of the estimated phase shift is analyzed by comparing the result obtained from the ellipse
fitting method [96], and the Fourier transform [32]. The respective results and absolute errors are
shown in Fig. 3.8. In this case, the phase shift from the Fourier method is slightly skewed. Both the
ellipse fitting method and the presented parameter estimation one present an absolute error of less
than 0.1 rad.

48



3. Phase demodulation by temporal carrier

0 1 2 3
0

1

2

3

(a)

k

R
ad

1 2 3
0

0.05

0.1

0.15

0.2

0.25

0.3
(b)

k

R
ad

Exact
(M1)
(M2)
(M3)

(M1)
(M2)
(M3)
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Figure 3.9: (a)-(d) Four experimental phase-shifted fringe-patterns I0 to I3. Recovered wrapped phase
by processing the first two (e), three (f), and four (g) fringe-patterns. (h) Estimated phase shift from the
parameter estimation (M1), the ellipse fitting (M2), and the Fourier transform (M3) methods.

Example 9 (Experimental validation). A commercial PASCO Michelson interferometer, Fig. 3.10,
illuminated with a collimated He–Ne (wavelength λ = 632.8 nm) laser source is used. A deformed
wavefront was obtained by inserting a transparent material in the test arm of the interferometer. The
phase shift is induced by using the precision micrometric knob to translate the movable mirror. Figs.
Fig. 3.9(a)-(d) show four phase-shifted interferograms recorded with progressive phase steps but no
attempt was made to make either calibrated or uniform.

The frames were recorded by a gray scale 8-bits CMOS camera with resolution of 600 × 800 pixels.
The spatial domain x, y ∈ [−1, 1] was used. Figs. 3.9(e)-(f) show the recovered wrapped phase by
using the parameter estimation approach from the first two, three, and four frames. Fig. 3.9(h) shows
the obtained phase shift from the parameter estimation (M1), the ellipse fitting (M2), and the Fourier
transform (M3) methods. In this case, the ellipse fitting and the parameter estimation methods reach
an almost identical phase shift while the Fourier transform method is slightly deviated.

49



3.4. Generalized phase-shifting algorithm for homogeneous phase shift

Figure 3.10: PASCO scientific precision Michelson interferometer (Model OS-9255A).

3.4.3 | Discussion

There are some important issues that deserve discussion.

Illumination profile. This algorithm exploit the information about the illumination profile. In general, the
interfering beams have a Gaussian intensity profile, but the parameter estimation approach approxi-
mates such a profile by the respective truncated Taylor expansion (a finite-degree polynomial). In the
examples a second-degree polynomial was employed by simplicity. However a higher order polynomial,
even more general polynomials (e.g. splines), can be used.

Number of fringes across the frame. The least-squares fitting is successful to cope data corrupted with
zero mean symmetrically distributed random noise. The presented algorithm obtains the parameters a
and b by a least-squares fitting to Ik(p) and [Ik(p)− âk(p)]2 respectively. En each case, the cosinusoidal
terms (b cos[ϕ + δ] and b2 cos[2ϕ + 2δ]/2) are considered as noise. Therefore, many fringe (open and
closed in any combination) across the frame are required with the aim of such cosinusoidal terms satisfy
symmetry and zero mean assumptions.

Number of frames. The presented algorithm can works from only two or more frames. However, a major
noise tolerance is experimented when a major number of frames is available as shown in Figs. 3.7(e)-(g)
and 3.9(e)-(g).

Single and multiple estimation. The used fringe-pattern normalization method can compute a background-
modulation pair for each frame (multiple estimation mode) or a single background-modulation pair for
all given frames (single estimation mode). The conventional phase-shifting algorithms (standard, ex-
tended, and generalized) are based on single estimation mode. However, the versatility multiple/single
estimation mode of the presented algorithm is convenient for more demanding experiments such as
phase-shifting by electrical current laser diode variation [8], amplitude modulation [20], diffraction with
amplitude grating [21,22], and lateral displacement of the illumination source [23].

In summary, the phase-shifting algorithm by parameter estimation is fast, simple, non-iterative, and
automatic. This algorithm is useful to work from only two or more frames. The unknown phase step can
be between 0 to π rad. Because a normalization stage is used, the presented algorithm can process fringe-
patterns with spatio-temporal visibility overcoming the restrictions imposed by conventional approaches. Due
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3. Phase demodulation by temporal carrier

to the good properties of this algorithm such as low computational cost, high robustness, and user-free, the
presented algorithm is useful for automatic real-time applications.

3.5 | Generalized phase-shifting algorithm for inhomogeneous phase shift

In some optical setups, it is difficult to keep a homogeneous phase shift. For example, the translation of the
reference mirror of an interferometer cannot be exactly perpendicular to the optical axis [87–89]. For this
case, the phase shift function consists of a set of tilted planes as shown in Fig. 3.1(c). Interesting schemes to
solve this problem have been developed [90–93].

Due to the development of advanced technologies (e.g. liquid crystal spatial light modulators) and
alternative experimental designs [20, 23], the requirements of phase-shifting algorithms have increased. Par-
ticularly, it is necessary to process phase-shifted fringe-patterns with unknown inhomogeneous phase shifts
that depend on both p and k [94] as shown in Fig. 3.1(d). Additionally, other desirable properties for
phase-shifting techniques are: a reduced number of necessary fringe-patterns, and the capacity to handle
spatio-temporal visibility (i.e. the background and modulation lights are functions of both p and k) [95].

In this section an extension of the generalized phase-shifting algorithm [71], given in §3.4, is presented.
This previous scheme can handle spatio-temporal visibility (i.e. the background and modulation lights are
surfaces changing for each fringe-pattern) but it assumes homogeneous nonlinear phase shift of k, Fig. 3.1(b).
Now, an advanced phase shift estimation stage is developed. Thus, the proposed algorithm can efficiently
handle inhomogeneous nonlinear phase shifts of both p and k, Fig. 3.1(d). The beneficial properties of
the algorithm (such as only two or more fringe-pattern requirements, robustness, user-free execution, and
computational efficiency) are kept. Computer simulation and experimental results validate this algorithm.

3.5.1 | Theoretical principles

Hereafter in this paper, for simplicity, all functions of p are defined in a discretized rectangular domain. Thus,
they are considered M ×N matrices and the variable p is not written down for brevity. For a M ×N matrix
A with M ≥ N and rank(A) = N , the notation A† = (ATA)−1AT denotes the least-squares inverse of A.

The wrapped phase recovered by the proposed generalized phase-shifting algorithm is carried out
through three stages: fringe-pattern normalization, phase shift estimation, and wrapped phase extraction.

Fringe-pattern normalization

The normalization procedure consists of removing the background ak and modulation bk lights from the fringe-
patterns Ik described by Eq. (3.1). For this, we used the parameter estimation approach [71]. Specifically,

ãk = AaA†
aIk, (3.34a)

b̃2k = 2AbA†
b(Ik − ãk)

2, (3.34b)

where ãk and b̃k are the approximations of the parameters ak and bk, respectively. The columns of the
matrices Aa and Ab are the basis functions employed.

Depending on the applications, the basis functions can be truncated Taylor polynomials, Fourier series,
piecewise polynomials (splines) of appropriate degree, B-splines, etc. For the simulation and experiments in
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Figure 3.11: (a) The data A2
k − 1 and 1− S2

k, given by Eqs. (3.37), for the estimation of the term cosαk.
For αk ∈ [0, π/2] it is convenient to choose 1 − S2

k because the noise amplitude is lower, and vice versa for
αk ∈ [π/2, π]. (b) Switch functions by hyperbolic tangent approximation of unit step functions. The constant
ω sets the smoothness of the transition at ck = 0. In this plot, ω = 15. (c) Equivalent data to polynomial
fitting by the procedure described with Eq. (3.39).

this work, we used a 2nd-degree polynomial to estimate ãk (a 2nd-order approximation of a Gaussian profile)
and, a 4th-degree polynomial to estimate b̃2k.

Finally, the normalized fringe-patterns are computed by

Īk = sat

(
Ik − ãk

b̃k

)
≈ cos[ϕ+ δk], (3.35)

where the saturation function sat(·) bounds the argument to the interval [−1, 1]. For more details on this
normalization procedure, the reader is referred to chapter 1 or Ref. [71].

Phase shift estimation

We consider the addition Ak and subtraction Sk of adjacent normalized fringe-patterns defined, respectively,
by

Ak = Īk−1 + Īk = 2 cos
αk

2
cos

[
ϕ+

δk−1 + δk
2

]
, (3.36a)

Sk = Īk−1 − Īk = 2 sin
αk

2
sin

[
ϕ+

δk−1 + δk
2

]
, (3.36b)

for k = 1, 2, · · · ,K − 1, where αk = δk − δk−1 (see Eq. (3.4)) is the phase step between the fringe-patterns
Ik and Ik−1. From the above equations, by applying some trigonometric identities and a few algebraic
operations, we can reach:

A2
k − 1 = cosαk + 2 cos2

αk

2
ηk, (3.37a)

1− S2
k = cosαk + 2 sin2

αk

2
ηk, (3.37b)

where ηk = cos(2ϕ + δk−1 + δk). It is possible to estimate the term cosαk from any above equation
by considering that the factor ηk is noise with zero mean and amplitude of 2 cos2(αk/2) or 2 sin2(αk/2),
respectively. However, in some situations, one is more convenient than another as shown in Fig. 3.11(a).
Particularly, for αk ∈ [0, π/2], it is appropriate to choose 1− S2

k, Eq. (3.37b), because the noise amplitude is
low (and it is higher in A2

k − 1), and vice versa for αk ∈ [π/2, π].

Since it is not possible to choose a priori the data A2
k−1 or 1−S2

k, we carried out a polynomial fitting
for these two data. Mathematically,

cAk = AcA†
c(A

2
k − 1), (3.38a)
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3. Phase demodulation by temporal carrier

cSk = AcA†
c(1− S2

k), (3.38b)

where cAk and cSk are the fitted polynomials which approximate the term cosαk from A2
k − 1 and 1− S2

k,
respectively. The columns of the matrix Ac are the basis functions of the polynomial used. Particularly, in
this work, a 4th-degree Taylor polynomial is used.

Now, to select between the polynomials cAk and cSk, we consider the approximation Γ(·) = [1 +
tanh(·)]/2 of the unit step function, Fig. 3.11(b), as

cosαk = cSkΓ(ωck) + cAkΓ(−ωck)

= ck +
1

2
(cSk − cAk) tanh(ωck),

(3.39)

where ck = (cAk + cSk)/2, and ω is an appropriate constant (experimentally, we chose ω = 15). Thus, a
smooth transition between cSk and cAk at ck = 0 is obtained.

It is worth mentioning that, instead of carrying out a polynomial fitting procedure to any data set as
shown in Fig. 3.11(a), the procedure described by Eq. (3.39) is similar to performing the polynomial fitting
to the equivalent data shown in Fig. 3.11(c).

To obtain the phase steps αk, an inverse cosine of Eq. (3.39) is computed. Then, the phase shift
function is constructed by the cumulative sum given by Eq. (3.5). It is not a loss of generality to consider
that δ0 = 0. If additional information over δ0 is available, it can be included in Eq. (3.5). For example,
δ0 = d(p) where d(p) is the last phase shift of a previous evaluation.

Wrapped phase extraction

Finally, the wrapped version ϕw of the phase distribution of interest ϕ is computed for each point p as

ϕw = arctan(ζ/ξ), (3.40)

where the quantities ζ = sinϕ and ξ = cosϕ are obtained by the least-squares method [78,79] as

[
ξ
ζ

]
= A†

ϕ

 I0
...

IK−1

 , (3.41)

with

Aϕ =


cos δ0 − sin δ0
cos δ1 − sin δ1
...

...
cos δK−1 − sin δK−1

 . (3.42)

It is worth mentioning that the above matrix Aϕ is, in general, different for each point p. Therefore,
this last stage is time-consuming because a matrix inversion must be performed for each point to solve Eq.
(3.41). However, the runtime can be reduced by parallel computing because the wrapped phase extraction
is pointwise. Particularly, the wrapped phase extraction is faster when the phase shift is homogeneous (non-
tilted planes). In this case, the matrix Aϕ is the same for all points p and a single matrix inversion is
necessary.

This proposed generalized phase-shifting algorithm to inhomogeneous phase shift and spatio-temporal
visibility is depicted by the block diagram shown in Fig. 3.12(a). A prototype computer implementation by
using the MATLAB software is given in Fig. 3.12(b).
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(a) Block diagram.

function[Wp,alp,d,bI,a,b,x,y]=iGPSpe(I,deg,mode,w)
%Generalized phase-shifting algorithm for
%inhomogeneous phase shift by parameter estimation
%
%This code is an implementation of the work
%reported in [Optics Express,
%Vol. 22, No. 4, pp. 4738 - 4750, 2014,
%DOI: http://dx.doi.org/10.1364/OE.22.004738] by
%Rigoberto Juarez-Salazar, et. al.
    [bI,a,b,x,y] = FPNorm(I,deg(1),mode);
    [Wp,alp,d] = WPhaseExt(bI,deg(2),w);
end
 
function [Wp,alp,d] = WPhaseExt(bI,deg,w)
MNK = size(bI);
if deg > 0
    % Bulding the regression matrices
    x = (2*(0:(MNK(2)-1))/(MNK(2)-1) - 1)';
    y = (2*(0:(MNK(1)-1))/(MNK(1)-1) - 1)';
    
    Ax = zeros(MNK(2),deg+1);
    Ay = zeros(MNK(1),deg+1);
    for k = 0:deg
        Ax(:,k+1) = x.^k;
        Ay(:,k+1) = y.^k;
    end
 
    % Computing the least-squares inverses
    Ayd = (Ay'*Ay)\Ay';
    Axd =  Ax/(Ax'*Ax);
    
    alp = zeros(MNK);
    for k=1:MNK(3)-1
        DA = (bI(:,:,k) + bI(:,:,k+1)).^2 - 1;
        DS = 1 - (bI(:,:,k) - bI(:,:,k+1)).^2;
 
        c_Ak = Ay*Ayd*DA*Axd*Ax';
        c_Sk = Ay*Ayd*DS*Axd*Ax';
        c_k  = (c_Ak + c_Sk)/2;
 
        cos_ak = c_k + ...
                 (c_Sk - c_Ak).*tanh(w*c_k)/2;
        cos_ak = sat(cos_ak);
        alp(:,:,k+1) = acos(cos_ak);
    end

    % Obtaining function delta
    d  = cumsum(alp,3);
    
    % Obtaining the wrapped phase
    Wp = zeros(MNK(1:2));
    for j = 1:MNK(2)
        for i = 1:MNK(1)
            AA=[cos(reshape(d(i,j,:),MNK(3),1))...
                -sin(reshape(d(i,j,:),MNK(3),1))];
            XiZe = AA\reshape(bI(i,j,:),MNK(3),1);
            Wp(i,j) = atan2(XiZe(2),XiZe(1));
        end
    end
else
    alp = zeros(MNK(3),1);
    for k=1:MNK(3)-1
        
        DA = (bI(:,:,k) + bI(:,:,k+1)).^2 - 1;
        DS = 1 - (bI(:,:,k) - bI(:,:,k+1)).^2;
 
        c_Ak = sum(DA(:))/numel(DA);
        c_Sk = sum(DS(:))/numel(DS);
 
        c_k  = (c_Ak + c_Sk)/2;
 
        cos_ak = c_k + ...
                    (c_Sk - c_Ak).*tanh(w*c_k)/2;
        cos_ak = sat(cos_ak);
        alp(k+1) = acos(cos_ak);
    end
    
    % Obtaining function delta
    d  = cumsum(alp);
    
    % Obtaining the wrapped phase
    AA = [cos(d) -sin(d)];
    Th = AA\reshape(bI(:),prod(MNK(1:2)),MNK(3))';
    Wp = atan2(Th(2,:),Th(1,:));
    Wp = reshape(Wp,MNK(1:2));
end
end

(b) Implementation in MATLAB

Figure 3.12: Generalized phase-shifting algorithm for inhomogeneous phase shift by the iGPSpe() function.
This function call the FPNorm() routine (the fringe-pattern normalization presented in chapter 1).

3.5.2 | Algorithm testing

The functionality of the proposal is verified by a computer simulation. Then, the feasibility and robustness
are tested by processing experimental phase-shifted fringe-patterns.
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Figure 3.13: Computer simulation. (1st column) Phase step α1, phase distribution ϕ to be recovered and
its wrapped version. (2nd column) Background a0 and modulation b0 lights for the first fringe-pattern I0.
Similarly, the 3rd column shows a1, b1 and I1. (4th column) Normalized fringe-patterns, computed phase
step, and recovered wrapped phase.

Computer simulation

We consider the phase step α1 and the phase distribution ϕ given, respectively, by

α1 = π

[
1

2
+

1

3
(x2 − y2)

]
,

ϕ = 6 peaks(500)+ 12(x2 + y2) + 1,

(3.43)

for x, y ∈ [−1, 1]. The command peaks(500) is defined in MATLAB software and returns a linear combination
of Gaussian functions. The plots of Eqs. (3.43) are shown in the first column of Fig. 3.13.

Now, two synthetic noisy fringe-patterns are simulated as

Ik = ak + bk cos(ϕ+ δk) + ρk, (3.44)

for k = 0, 1, where ρk is a Gaussian noise with zero mean and standard deviation σ(10%). The respective
background and modulation lights are given by

a0 = 15(x2 + y2 + 1), b0 = x3 + y2 + 2,

a1 = 20(y2 − x2 + 1) + 5x, b1 = y3 − x2 + 2.5.
(3.45)

The functions ak, bk, and Ik are shown in the second and third columns of Fig. 3.13 for k = 1, 2, respectively.

The two simulated fringe-patterns Ik, Figs. 3.13(j) and 3.13(k), are processed by the proposed al-
gorithm. The resulting normalized fringe-patterns Īk, phase step α1, and the recovered wrapped phase are
shown in the last column of Fig. 3.13.
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Figure 3.14: Computer simulation. (1st column) Absolute error from the phase step and wrapped phase
estimations. (2nd column) The respective error histograms.
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Figure 3.15: (a) Optical setup for the phase-shifting experiments. Pictographic description of the piezo-
electric control signals to generate phase shifts: (a) homogeneous, (b) inhomogeneous tilted planes, and (c)
inhomogeneous surfaces.

By direct comparison between Figs. 3.13(i) and 3.13(l), we can see that a correct solution was reached.
This claim is verified by the error information shown in Fig. 3.14. The first column of Fig. 3.14 shows the
absolute error from estimation of the phase step, Fig. 3.14(a), and the wrapped phase, Fig. 3.14(c). The
second column of Fig. 3.14 shows the respective error histograms (normalized in frequency).
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Experimental results

The feasibility of the proposed algorithm was examined by processing experimental fringe-patterns recorded
from the Twyman-Green Interferometer shown in Fig. 3.15(a). A collimated laser beam was obtained by
a He–Ne laser source (wavelength λ = 633 nm), a spatial filter (objective microscope and pinhole), and a
collimating lens (focal length f = 0.5 m).

Figure 3.16: Experimental results. Wrapped phase computed from three phase-shifted fringe-patterns when
the phase shift is: (1st row) homogeneous (non-tilted planes), (2nd row) inhomogeneous tilted planes, and
(3rd row) inhomogeneous surfaces. (1-3rd columns) Fringe-patterns to be processed. (4th column) Computed
phase shift. (5th column) Recovered wrapped phase. (6th column) Resulting background light.

In the first interferometer’s arm, the translation of the flat mirror M1 is driven by two piezoelectric
devices, PZT1 and PZT2. Thus, if the control signals for these devices are equal, Fig. 3.15(b), a homogeneous
phase shift is induced. Otherwise, Fig. 3.15(c), an inhomogeneous tilted planes phase shift is generated and
the tilting is controlled by the difference between the control signals. Moreover, if the control signals are
impulsive, Fig. 3.15(d), an inhomogeneous surface phase shift is induced due to this mechanical perturbation.

A distorted wavefront was generated by inserting a phase object in the second interferometer’s arm.
The fringe-patterns observed on the plane OP were recorded by using a gray-scale camera sensor (1824×1418
pixels with 8-bit pixel depth). Notice that the phase object is not previously characterized. However, it is
measured by first phase-shifting with a conventional homogeneous phase shift. Thus, when inhomogeneous
phase shifts are considered, the results must be consistent with the first measure.

The proposed algorithm requires only two or more fringe-patterns to work. However, we considered
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3.5. Generalized phase-shifting algorithm for inhomogeneous phase shift

three fringe-patterns in order to test the phase shift estimation quality later. Accordingly, three phase-shifting
experiments were carried out. The induced phase shifts are, respectively: homogeneous (i.e., non-tilted
planes), Fig. 3.16(1st row), inhomogeneous tilted planes, Fig. 3.16(2nd row), and inhomogeneous surfaces,
Fig. 3.16(3rd row).

There are several evaluation methods to test the performance of generalized phase-shifting algorithms
[103]. In this work, the proposed algorithm is verified by using the background-phase correlation [104]. The
principle of background-phase correlation is as follows. If the phase shift δ is obtained with an error ε ≪ 1
(i.e., we have δ̃ = δ + ε), the least-squares method to phase extraction solves the problem (at least three
fringe-patterns are required):

I = a+ b cos(ϕ+ δ̃)

≈ ã+ b cos(ϕ+ δ),

where the computed background ã = a − εb sin(ϕ + δ) is correlated with the phase function ϕ by the term
εb sin(ϕ + δ). Thus, a simple way to test the phase shift estimation quality is by computing the correlation
coefficient between the reconstructed background light and the fringe-patterns.
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Figure 3.17: (1st row) Unwrapped phases ϕ1, ϕ2, and ϕ3, respectively, of the wrapped phase maps shown in
the 5th column of Fig. 3.16. (2nd row) The difference ϕ2−ϕ1, its fitted plane, and the fitting error (4.5×10−15

average value). (3rd row) The difference ϕ3 −ϕ1, its fitted plane, and the fitting error (−3.3× 10−14 average
value).

The resulting background light for each phase-shifting experiment is shown in Fig. 3.16(6th column).
In each experiment, the reconstructed background light is compared with the fringe-patterns and the three re-
spective correlation coefficients are computed. The maximum correlation values are 0.5618 (first experiment),
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3. Phase demodulation by temporal carrier

0.5579 (second experiment), and 0.6271 (third experiment). The accuracy levels reached in all experiments
are similar (the computed correlation coefficient is 0.5925± 0.0346).

3.5.3 | Discussion

Reference frame in phase-shifting

It seems that the extracted wrapped phase maps (5th column in Fig. 3.16) do not describe the same object
phase because these maps are not equal. Since the measured phase object is the same in all measurements,
the recovered wrapped phases must match in some sense. Indeed, as phase-shifting techniques measure only
the relative phase distribution, it can be transformed by translations and/or rotations without affecting the
topography of the recovered phase distribution. That is rather an effect due to the established reference
frame. In particular, the “reference point” in phase-shifting is given by the phase shift δk(p) at k = 0 as is
shown below.

The wrapped data of the 5th column in Fig. 3.16 are unwrapped by using the phase-unwrapping
method by the rounding-least-squares approach [105] (this algorithm will be presented in the chapter 4). The
respective results (which will be labeled as ϕ1, ϕ2, and ϕ3) are shown in Figs. 3.17(a)-(c). The differences
ϕ2 − ϕ1 and ϕ3 − ϕ1 are shown in Figs. 3.17(d) and 3.17(g), respectively. We can see that these differences
are planes. This claim is verified by fitting linear functions, Figs. 3.17(e) and 3.17(h), where the fitting error,
Figs. 3.17(f) and 3.17(i), present average values of 4.5 × 10−15 and −3.3 × 10−14, respectively. Although
the difference ϕ3 − ϕ2 is not shown, it can be proved that such difference is also a plane.6 Accordingly, the
experimental wrapped phase maps in Fig. 3.16 actually describe the same topography.

Furthermore, the differences shown in Figs. 3.17(d) and 3.17(g) are explicable. The measurements
were performed in sequence (first, phase-shifting by non-tilted plane phase steps, next, tilted planes, and,
lastly, surface phase shifts). In all measurements, δ0(p) = 0 was assumed. Then,

� For the first experiment, the wavefront of interest was measured and an additional phase (the non-tilted
phase shift) was induced.

� For the second experiment, since δ0(p) = 0 was considered, the recovered phase distribution corresponds
to the wavefront of interest plus the phase shift from the first experiment. Thus, the difference between
the results from this experiment and the first one must be a non-tilted plane. Approximately, this
difference is observed in Fig. 3.17(d). Again, an additional phase (a tilted plane) is induced by the
phase-shifting procedure.

� For the third experiment, the wavefront of interest plus the cumulated phase shifts was measured by
assuming δ0(p) = 0. Therefore, the difference between the results from this experiment and the first
one is the resultant tilted plane as is observed in Fig. 3.17(g).

� In any future experiment, the wavefront of interest plus the phase added by previous phase-shifting
experiments will be sensed.

Notice that, if the initial phase is known (e.g. the last induced phase shift), it can be included as
δ0(p) in Eq. (3.5). This subtracts this cumulated phase from the final wrapped phase map. In any case, the
proposed phase-shifting algorithm can extract the interest wrapped phase distribution up to an initial phase
shift δ0(p) as occurs with any phase-shifting method.

6We consider this example: let f1 = ϕ be the first phase function with ϕ being an arbitrary function. Then, for a second and
third phase distributions f2 = ϕ+ g and f3 = ϕ+ h where g and h are a planes, the difference f3 − f2 = g− h is another plane.
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3.5. Generalized phase-shifting algorithm for inhomogeneous phase shift

Spatio-temporal visibility fluctuations

The spatio-temporal visibility is addressed by the normalization stage in the algorithm’s scheme. This good
feature was shown by computer simulation. But, this property could not be confirmed in the experimental
evaluations because the employed optical setup does not exhibit such visibility fluctuations. However, the
potential to cope spatio-temporal visibility by the normalization stage was studied in experimental cases also
as shown in chapter 1.

Algorithm performance

The proposed algorithm is based on the computationally efficient least-squares method. The suggested
scheme shown in Fig. 3.12 provides high robustness and easy implementation. Among its processing stages,
the wrapped phase extraction is the most computationally intensive because it requires a matrix inversion
for each pixel of the fringe-pattern. However, this pointwise computation also allows parallel computing. By
using a 2.5 GHz laptop, the computer time required to obtain the results shown in Figs. 3.13 and 3.16 is
shown in Fig. 3.18.
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Figure 3.18: Computing time required for processing: (a) Two 500×500 fringe-patterns with inhomogeneous
nonlinear phase shift (Fig. 3.13). (b)-(d) Three 1824 × 1418 fringe-patterns with: homogeneous (constant),
inhomogeneous linear, and inhomogeneous nonlinear phase shifts, respectively (Fig. 3.16). The hardware
used was a 2.5 GHz laptop.

From the first bar of the plot in Fig. 3.18, we can see that the phase extraction from two fringe-
patterns of moderate size is carried out in less that one second. For bigger fringe-patterns, quasi-dynamic
measurements are still possible as is the case of an optical workshop (e.g., interferometrical monitoring from
1824×1418 pixels fringe-patterns every 5 seconds). Notice that this algorithm is very fast when the particular
homogeneous phase shift is involved (Fig. 3.18(b)) because a single matrix inversion in the wrapped phase
extraction stage is sufficient.

On the other hand, the algorithm settings (mainly basis functions and degree of the polynomials) are
established before the algorithm is running. Further user intervention is not required. Consequently, due
to the low hardware requirements and user-free execution of the proposal, it could be used in automatic
applications.

The simplicity of the suggested algorithm allows its implementation into dedicated hardware such as
DSP (Digital Signal Processor). This will reduce the computing time notably. Thus, this algorithm could be
used in real-time applications.
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3. Phase demodulation by temporal carrier

Operating requirements

The proposed algorithm is highly flexible for processing phase-shifted fringe-patterns. However, to obtain
the optimal algorithm performance, there are three main issues to keep in mind.

First, the fitting procedure by using the least-squares method is efficient when the data frames are
corrupted with additive symmetrically distributed zero mean noise. This method is applied to obtain the
functions ak, bk and αk where the additive terms cos(ϕ+ δk) and cos(2ϕ+ δk−1 + δk) (with their respective
amplitudes) are seen as noise. Thus, many fringes (open and closed in any combination) across the recorded
intensities Ik are required in order to satisfy both symmetric distribution and zero mean conditions. The
property of additivity of the noise does not allow processing speckled fringe-patterns because speckle noise is
multiplicative. However, the method could be applicable if pre-filtering of the fringe-patterns is accomplished.

Second, the estimation of the functions ak, bk, and αk requires appropriate basis functions. Fortunately,
there are a variety of options from which we can choose for each particular application. For example, the
basis functions can be polynomials (such as truncated Taylor and Fourier series, Seidel, Zernike, etc.), splines
(piecewise polynomials) of appropriate degree, B-splines, etc. This flexibility allows the proposed algorithm
to be implemented in many applications.

And third, the phase steps αk are computed as the argument of a cosine function, Eq. (3.38). Therefore,
the phase steps are recovered without ambiguity if αk lies within the interval (0, π) rad. Nevertheless, the
phase shift δk (the cumulative sum of the phase steps) may be greater than 2π as long as the matrix Aϕ of
Eq. (3.42) satisfies rank(Aϕ) = 2. If the phase steps exceed the interval (0, π), they are wrapped. We believe
that this issue can be overcome by an additional unwrapping procedure; however, this possibility is left as
future work.

3.6 | Conclusion

The generalized phase-shifting scheme for wrapped phase extraction is the most versatile and useful in practice
because it relieves the experimental requirements.

Conventional generalized algorithms require three or more frames. Moreover, such algorithms cannot
address neither spatio-temporal visibility nor inhomogeneous phase shifts.

In this chapter a generalized inhomogeneous phase-shifting algorithm working with only two or more
frames was presented. The algorithm is based on a cascade least-squares estimation scheme. This algo-
rithm can handle fringe-patterns with spatio-temporal visibility and inhomogeneous surface phase shift. The
algorithm features and its operating conditions have been discussed.

Computer simulations and experimental results have shown the feasibility of this algorithm. Moreover,
the obtained results have shown that the wrapped phase computing is possible even when an inhomogeneous
phase shift is induced (e.g., by nonlinearity of piezoelectric materials or miscalibrated phase shifters) and
large visibility changes have occurred. The computational efficiency and user-free execution of this algorithm
allows it to be implemented in automatic applications.
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Chapter 4

Phase-unwrapping algorithm by a
rounding-least-squares approach

The first principle is that you must not fool
yourself —and you are the easiest person to
fool.

Richard Feynman
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No much actual physical information is given by a phase distribution if it is in the wrapped format. Both
Fourier fringe analysis and phase-shifting provide us wrapped phase maps. Therefore, it is essential a

phase-unwrapping procedure to remove the artificial discontinuities induced by the performed phase encoding
of the physical information of interest.

This chapter describes the concepts of local and global approaches for phase-unwrapping and its re-
spective properties. Then, a simple and efficient phase-unwrapping algorithm based on a rounding procedure
and a global least-squares minimization is presented.

The performance of the studied phase-unwrapping algorithm is evaluated. The obtained results show
that this algorithm reaches high accuracy levels by a low computing time. Moreover, since the proposed
algorithm is simple, fast, and user-free, it could be used in automatic real-time applications.
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4.1. Preliminary definitions

4.1 | Preliminary definitions

The floor operator, denoted as ⌊x⌋, returns the first integer number equal or previous to x. It is defined as

⌊x⌋ := max{m ∈ Z|m ≤ x}. (4.1)

A useful property of the floor operator is

⌊x+ n⌋ = ⌊x⌋+ n, (4.2)

where n is any integer. The modulo operation, denoted as mod(x, y), returns the remainder after division
of x by y. This operation is defined as

mod(x, y) := x− y⌊x/y⌋, (4.3)

where mod(x, 0) = x by convention. Assuming y > 0, it follows that the modulo operation returns a number
in the half-open interval [0, y) for any real number x. A useful property of the modulo operation is

mod(x+ ky, y) = mod(x, y), (4.4)

where k is any integer number. We define the wrapping operator W : ℜ → [−π, π) as

W[x] := mod(x+ π, 2π)− π

= x− 2π

⌊
x+ π

2π

⌋
.

(4.5)

For any integer number k, a real number z ∈ [−π, π)real number x

The wrapping operation presents the following properties. Let x and k be any real and integer numbers,
respectively, then

W[x+ 2πk] = W[x]. (4.6)

If y is a real number in the interval [−π, π), then

W[y] = y. (4.7)

4.2 | Introduction

Phase-unwrapping is a key procedure in computer-aided technologies for digital analysis of fringe-patterns
[106]. This is an essential procedure to sensing a wide range of static and dynamic physical information such
as strain, topography, flow, temperature, magnetic field inhomogeneities, wavefront, among others. Numerous
applications involves phase unwrapping, for instance optical testing, biomedical studies, geological surveys,
automotive and aerospace industries, mechanical and civil engineering [2, 107].

In the mentioned applications, the physical parameter to be measured is encoded as phase in a cosinu-
soidal function [72]. Since the phase computing involves an inverse trigonometric operation, only the principal
values (wrapped phase) can be determined [3]. Thus, before the physical information can be interpreted, the
phase-unwrapping must be performed [107].

Generally speaking, the phase-unwrapping algorithms can be classified into two categories: temporal
and spatial methods.

The temporal methods require a set of sequentially recorded data frames. Then the phase is unwrapped
along the time axis for each pixel independently of the others [108,109]. Because the unwrapping is pointwise,
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4. Phase-unwrapping algorithm by a rounding-least-squares approach

the points or regions with local error do not influence the good data points; i.e., there is no spatial error
propagation [110,111]. The main advantage of the temporal scheme is that it can unwrap noisy phase surfaces
with complex topography and discontinuities in a very simple and efficient way [112,113]. Unfortunately, the
multiple data frames requirement is a serious restriction for many fringe analysis applications. Consequently,
the spatial phase-unwrapping methods are more attractive because they require a single data frame.

The spatial phase-unwrapping methods can be further classified in: local (path-dependent or path-
following), and global (path-independent or minimum-norm ) approaches [114]. Their operation principles
are described as follows.

4.2.1 | Local phase-unwrapping approach

Let ϕ(r) be an unwrapped phase map where r = (x, y) is a point in the plane, and let ψ(r) = W[ϕ(r)] be the
wrapped version of ϕ(r). From Eq. (4.5), we have that the wrapped phase map can be modeled as

ψ(r) = ϕ(r)− 2πk(r), (4.8)

where k(r) = ⌊(ϕ+π)/2π⌋ is an unknown integer-valued (piecewise constant) function. Since the phase jumps
term 2πk(r) is a piecewise constant function, its gradient 2π∇k(r) (where ∇ is the gradient operator) is zero
piecewise. This fact is helpful to obtain the gradient of the unwrapped phase by the Itoh’s relation [107,115]:

∇ϕ(r) = W{∇ψ(r)}. (4.9)

In general, the Eq. (4.9) is the basis of spatial methods [116].

The local phase-unwrapping approach is carried out from Eq. (4.9) by the path-integration procedure:

ϕ(r) = ϕ0 +

∫
C

W{∇ψ(r)} dr, (4.10)

where ϕ0 is the constant of integration and C is an appropriate integration path. This approach generates
fast and computationally simple unwrapping algorithms. However, choosing an integration path is not
trivial [117].

For good quality (noise-free) wrapped maps, an irrotational gradient field W{∇ψ(r)} is obtained; i.e.,
the gradient field does not have residues. In this case, the integration path C is arbitrary. Unfortunately, by
the unavoidable presence of many error sources in experimental situations, the gradient field W{∇ψ(r)} is
contaminated with residues. Therefore, the choosing of an integration path C is a problem in itself [118,119].
Some relevant solutions are the residues compensation (branch-cut) [120, 121], the quality maps [122–124],
reliability maps [109, 125], and noise filters [126, 127]. However, an important drawback of these methods is
the low robustness in the sense that, even for low levels of noise in the wrapped data, a different unwrapped
phase can be obtained depending on the selected integration path [128,129].

4.2.2 | Global phase-unwrapping approach

Alternatively, the global approach provides robust phase-unwrapping algorithms because they do not depend
on path-following techniques [107,130]. This approach formulates the unwrapping process as the minimization
problem [131]:

min
ϕ

∥∥∥W[∇ψ(r)]−∇ϕ(r)
∥∥∥
p

(4.11)

where ∥ · ∥p denotes the Euclidean ℓp norm. Typical algorithms in this category are the cases p = 1 (Flynn’s
method) and p = 2 (least squares method).
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For the least-squares case, the problem (4.11) is reduced to solve the Poisson’s equation. Since there are
computationally efficient techniques to solve this type of equation (e.g., the fast Fourier Poisson solver), the
least-squares is the most common global phase-unwrapping algorithm [132,133]. Although the global methods
are robust and computationally efficient, they tend to distort the phase distribution by residue-spreading and
over-smoothing [134].

Residue-spreading is an effect resulting from the global nature of the approximation approach described
by (4.11) [132]. In other words, global phase-unwrapping algorithms cannot isolate the residues at the
local bad points or regions. On the other hand, over-smoothing is a consequence of the approximation
of the input data by a function from a prefixed functions space (mainly polynomial functions and Fourier
series) [135, 136]. The residue-spreading problem can be overcome by weighting strategies [137] or filtering
systems [138] such as localized compensators [134], total-variation denoising [139], windowed Fourier filtering
and least squares [140]. The definition of a most general functions space should solve the over-smoothing
problem. Unfortunately, these solutions represent a hard computational load. The longer computing time is
unacceptable for reliable and real-time applications.

Instead of working with the gradient field of the wrapped phase given by Eq. (4.9), where the phase
jumps term 2πk(r) is removed, an alternative approach is to extract the gradient of the jumps function k(r)
and to work with it. Then, by using the computed jumps function k(r), the phase-unwrapping is carried out
by solving the Eq. (4.8) for ϕ(r). In principle, this approach would solve both the residue-spreading and
over-smoothing problems inherent in (4.11) due to the following reason.

In contrast to the infinite possible values of ∇ψ(r), the possible values of ∇k(r) is a finite set D because
the wrapped phase exhibits phase jumps of almost 2π in absolute value [141]. In particular,

D = {−1, 0,+1}, (4.12)

i.e., phase jump from π to −π, no phase jump, and phase jump from −π to π, respectively. The reduced data
values of ∇k(r) makes the derived algorithms less sensitive to noise (low residue-spreading). Moreover, be-
cause the input data can be represented exactly by a simple piecewise constant functions, the over-smoothing
problem is removed.

In this chapter an efficient and robust phase-unwrapping algorithm is presented. This algorithm is
based on a rounding to remove the gradient of unwrapped phase and works with the remaining phase jumps.
Then, a least-squares integration is applied to find the phase jumps component from its gradient. This
algorithm is very simple, fast, user-free, and does not require quality maps or any other additional data or
filtering stage; thus, it is appropriate for real-time applications. The feasibility of this algorithm is shown
by simulated and experimental data processing. The good performance of the proposal is highlighted by
comparing this algorithm with the Minimum Cost Network Flow (MCNF) [142], fast Fourier transform,
quality-guided, and branch-cut methods [107].

4.3 | Theoretical algorithm description

Hereafter in this chapter, it is assumed that Ω is a uniformly sampled rectangular domain. Thus, the two-
dimensional functions ψ(r), ϕ(r) and k(r) are considered as M × N matrices and the dependence of the
variable r is not written down for brevity. We define the discrete gradient ∇f of any M ×N matrix f as

∇f :=

[
∂f/∂x
∂f/∂y

]
=

[
fx
fy

]
=

[
fLT

x

Lyf

]
, (4.13)

with [·]T denoting matrix transposition, and where Lx and Ly are the difference operators along the horizontal
and vertical directions, respectively. The matrices Lx and Ly define the finite difference approximation. In
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general, higher-order methods for approximating the derivative can be applied. Nevertheless, we define the
difference operators as the simple double diagonal matrices (first-order approximation):

Lx =

−1 1
. . .

. . .

−1 1


(N−1)×N

, (4.14a)

Ly =

−1 1
. . .

. . .

−1 1


(M−1)×M

, (4.14b)

or more briefly by

Lx =
[
0⃗N−1 IN−1

]
−
[
IN−1 0⃗N−1

]
,

Ly =
[
0⃗M−1 IM−1

]
−
[
IM−1 0⃗M−1

]
,

where 0a×b is a a× b matrix with all entries equal to zero, and Ia is the squared a× a identity matrix.

Usually, the difference operators Lx and Ly are defined as square matrices in order that the matrix
f and its derivatives fLT

x and Lyf have the same size M × N . The differentiation matrices (4.14) can be
squared by using appropriate discrete differentiation formulas at the end points [143]. However, the simple
rectangular definition used in (4.14) is sufficient because these matrices are used in the forms LT

xLx and
LT
y Ly (which are squared by N ×N and M ×M , respectively) as we will see later.

We consider the gradient of the wrapped data (4.8). From this gradient field, the 1/(2π) part is taken
and the result is rounded; i.e.,

round

(
1

2π
∇ψ
)

= round

(
1

2π
∇ϕ−∇k

)
= round

(
1

2π
∇ϕ
)
−∇k,

(4.15)

where round(·) is the operator which leads each matrix entry to the nearest integer. The last equality in (4.15)
is derived by the fact that ∇k is a integer-valued term (since k is an integer-valued function, its differences
kx and ky must be integer-valued functions too). Now, if the Nyquist sample condition∣∣∇ϕ∣∣ < π ∀r ∈ Ω (4.16)

is satisfied, then the quantity |∇ϕ/(2π)| is less than 1/2 for all r in Ω. Hence, round[∇ϕ/(2π)] is zero. In this
context, the term ∇k is the integer component of the quantity ∇ψ/(2π). This convenient property allows
computing the gradient field ∇k by the simple rounding:

∇k =

[
kx
ky

]
= −round

(
1

2π
∇ψ
)
. (4.17)

The procedure to obtain a function from its gradient (gradient field integration) is a common issue in
several computer-aided contexts [143,144]. Analogous to the optimization in (4.11), the computing of k from
its gradient field ∇k can be formulated as the least-squares optimization problem [145]:

min
k̃
ϵ(k̃) =

∥∥∥kx − k̃LT
x

∥∥∥2
F
+
∥∥∥ky − Lyk̃

∥∥∥2
F
, (4.18)
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where kx and ky are the available data given by Eq. (4.17), k̃ is the approximating function and ∥·∥F denotes
the Frobenious norm. By definition, we have that, for the real matrix A, the Frobenious norm ∥A∥F satisfies

∥A∥2F = tr(ATA),

where tr(·) denotes the trace of a square matrix. The above equation allow us to restate the functional in
(4.18) as

ϵ = tr

[(
kx − k̃LT

x

)T (
kx − k̃LT

x

)]
+ tr

[(
ky − Lyk̃

)T (
ky − Lyk̃

)]
. (4.19)

Expanding this equation, we have

ϵ(k̃) = tr
[(
kTx − Lxk̃

T
)(

kx − k̃LT
x

)]
+ tr

[(
kTy − k̃TLT

y

)(
ky − Lyk̃

)]
= tr

[
kTx

(
kx − k̃LT

x

)
− Lxk̃

T
(
kx − k̃LT

x

)]
+ tr

[
kTy

(
ky − Lyk̃

)
− k̃TLT

y

(
ky − Lyk̃

)]
= tr

[
kTx kx − kTx k̃L

T
x − Lxk̃

T kx + Lxk̃
T k̃LT

x

]
+ tr

[
kTy ky − kTy Lyk̃ − k̃TLT

y ky + k̃TLT
y Lyk̃

]
.

(4.20)

At this point, it is convenient to know some properties of the trace operation.

Basic properties of the trace operation

From linear algebra, it is known that the trace is a linear mapping; i.e.,

tr(αA+ βB) = αtrA+ βtrB, (4.21)

for all square matrices A and B, and all scalars α and β. Another useful trace property is

trA = trAT . (4.22)

In words, the matrix A and its transpose AT have the same trace. By using the properties (4.21) and
(4.22), we have that

tr[αA+ βAT ] = tr[(α+ β)A]

= tr[(α+ β)AT ].
(4.23)

Some useful derivatives of traces are the following. If A, B, and X are three matrices of appro-
priate sizes, then holds that

∂

∂X
tr(AXB) = ATBT , (4.24)

and
∂

∂X
tr(ATXTBXA) = (BT +B)XAAT . (4.25)

The relations (4.24) and (4.25) are known as the first and second order derivatives of traces, respec-
tively.

The equalities in (4.23) allow us to simplify the last equation in (4.20) as

ϵ = tr
[
kTx kx − 2kTx k̃L

T
x + Lxk̃

T k̃LT
x

]
+ tr

[
kTy ky − 2kTy Lyk̃ + k̃TLT

y Lyk̃
]
. (4.26)
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4. Phase-unwrapping algorithm by a rounding-least-squares approach

Now, we use the necessary first-order condition for optimality

∂

∂k̃
ϵ(k̃) = 0. (4.27)

The linearity property of both the trace and the derivative operations allow us to write

−2
∂

∂k̃
tr
[
kTx k̃L

T
x

]
+

∂

∂k̃
tr
[
Lxk̃

T k̃LT
x

]
− 2

∂

∂k̃
tr
[
kTy Lyk̃

]
+

∂

∂k̃

[
k̃TLT

y Lyk̃
]
= 0. (4.28)

By using the Eqs. (4.24) and (4.25), the above equation become to The linearity property of both the trace
and the derivative operations allow us to write

−2kxLx + 2k̃LT
xLx − 2LT

y ky + 2LT
y Lyk̃ = 0. (4.29)

or in compact form
Ak̃ + k̃B = C, (4.30)

where A = LT
y Ly, B = LT

xLx, and C = LT
y ky + kxLx. In literature, equation (4.30) is known as Lyapunov’s

[146] or Sylvester’s equation [147].

Notice that, although Lx and Lx are (N − 1)×N and (M − 1)×M matrices, the solution matrix k̃
in Eq. (4.30) has the size of M ×N (the same size as the wrapped phase map ψ) as it should be.

Efficient methods to solve Eq. (4.30) have been proposed [147, 148]. Most of them are based on
simplifying the original matrix equation by similarity transformations [149]. Intuitively, the solution of Eq.
(4.30) for k̃ is obtained as follows. Let UΣV T be the singular value decomposition of B. Particularly, since
B is a symmetric matrix, then the orthogonal matrices U and V are equals and Σ = diag(σ1, · · · , σN ) is a
square diagonal matrix with σi the singular values of B. Accordingly, the right multiplication of Eq. (4.30)
by U generates the equation

Ak̃U + k̃BU = CU. (4.31)

By inserting the identity matrix I = UUT in the second term of the left side of the above equation, we have
Ak̃U + k̃UUTBU = CU which is rewritten as

AK +KΣ = D, (4.32)

where K = k̃U and D = CU . It is not difficult to solve the transformed system (4.32) because K can be
computed column-wise. Namely, let K = [κ1 κ2 · · · κN ] and D = [d1 d2 · · · dN ] be the column partitioning
of K and D, respectively. The column κi is computed by a standard matrix inversion as

κi = (A+ σiI)
−1di (4.33)

with i = 1, 2, · · · , N . When all columns of K are computed, the original equation (4.30) is solved by
k̃ = KUT . Because this procedure computes the solution k̃ in real values, the rounding is applied again to
obtain k̄ (integer values).

Finally, with the computed jumps function k̄, the phase-unwrapping is carried out by solving the
equation (4.8) for ϕ as

ϕ = ψ + 2πk̄. (4.34)

This algorithm is summarized in Fig. 4.1 by a block diagram representation.

It is worth mentioning that the computational effort to execute this algorithm depends only on the
size of the input wrapped data. In contrast, the computing time required by the path-following methods
(where the MCNF is included) depends on both the size of the input data and the noise content. This is
shown by the following computer simulation and experimental results.
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ψ
∇
∇ψ 1

2π
round ∇k LS

k 2π 2πk

ψ

φ
+round k

Figure 4.1: Proposed rounding-least-squares scheme to phase-unwrapping.

4.4 | Simulated and experimental results

In this section, the proposed algorithm is tested by processing both synthetic and experimental wrapped
phase maps. In order to show the full potential of the proposed method, it is compared with the well-known
Minimum Cost Network Flow (MCNF), the Fast Fourier Transform (FFT), the Quality Guided (QG) and
the branch-cut methods.

4.4.1 | Computer simulation

Since unwrapping routines are sensitive to noise and the local gradient (or spatial frequency), among others
[150], a computer simulation was designed to include these two harmful parameters.

A N ×N (with N = 200) square domain is considered. The employed unwrapped phase distribution
is:

ϕ(x, σ) = ax2 + η(x, σ), (4.35)

where a = Nπ/2 is a constant, and η(x, σ) is a zero mean Gaussian noise term along the x-axis with standard
deviation of σ. The variables x and σ are defined respectively as

x ∈ [0, 1], σ ∈ [0, π/5] , (4.36)

where π/5 represent a standard deviation σ(10%) rad of error. These synthetic data are shown in Fig. 4.2.

Notice that the phase distribution (4.35) is such that the spatial frequency linearly increases along the
x-axis (from zero at x = 0 until to the Nyquist frequency limit at x = 1) while the random noise has a constant
standard deviation σ. On the other hand, the standard deviation of the random noise linearly increases along
the σ axis while the spatial frequency is constant. Accordingly, the performance on phase-unwrapping is
evaluated on both spatial frequency and noise level simultaneously.

The wrapped phase map shown in Fig. 4.2(c) is processed by the MCNF, the proposed rounding-least-
squares, the FFT, the quality-guided, and branch-cut algorithms. The resulting unwrapped maps are shown
in Figs. 4.2(d)-(h), respectively. The relative error for each unwrapped phase is shown in Figs. 4.2(i)-(m),
respectively.

The last row of Fig. 4.2 reveals that the MCNF method has the best accuracy and it is seconded by
our proposed algorithm. The error from the FFT method is slightly higher than our proposed method. The
quality-guided method has a big error. The lower accuracy is observed in the branch-cut method because it
does not work in the region with both high frequency and high noise levels.

The computer time required for each phase-unwrapping algorithm is shown in Fig. 4.3. Both our
proposed algorithm and the FFT require the least amount of computer time (0.1018±0.0078 s). The MCNF
and the branch-cut needed much more computer time (5.68 and 6.11 s, respectively). The most computational
intensive algorithm was the quality guided method by requiring the higher computer time (28.34 s).
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4. Phase-unwrapping algorithm by a rounding-least-squares approach

Figure 4.2: Simulation results. (a) Synthetic noisy unwrapped phase ϕ(x, σ). (b) The noise component
η(x, σ). (c) Wrapped phase map. Unwrapped phase recovered by: (d) the MCNF, (e) the proposed rounding-
least-squares, (f) the FFT, (g) the quality-guided, and (h) the branch-cut methods. (i)-(m) The respective
relative errors.
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Figure 4.3: Computing time required to process a wrapped phase map of 200 × 200 pixels by the MCNF,
the proposed rounding-least squares, the FFT, the quality-guided, and the branch-cut methods in a 2.5 GHz
laptop.
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4.4. Simulated and experimental results

4.4.2 | Processing of experimental wrapped phase maps

In order to test the robustness of the proposed algorithm, three experimental wrapped phase maps, shown in
Fig. 4.4, were processed. These data frames were obtained from a Fizeau interferometer (by using a Fourier
normalized fringe analysis method [28]), by fringe projection (by using the four-step phase-shifting method
[3]), and by a Twyman-Green Interferometer (by using the generalized phase-shifting method presented in
§3.4 and reported in [71]). The array sizes are 404× 392, 326× 421, and 205× 262 pixels, respectively.
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Figure 4.4: Experimental wrapped phase maps obtained from a Fizeau Interferometer (a), fringe projection
(b), and a Twyman-Green Interferometer (c).

The computed unwrapped phase for each input frame are shown in the first three rows of Fig. 4.5,
respectively. The columns in Fig. 4.5 correspond with the results obtained by the MCNF, our proposed
method, the FFT method, the quality-guided, and the branch-cut, respectively.

Since the MCNF method has the higher accuracy (it was verified in the previous subsection titled
Computer simulation), its unwrapped phase results are used as a baseline. Thus, the absolute error from
the remaining methods are shown in the last three rows of Fig. 4.5. The distribution is similar to the
block of unwrapped phases: the rows correspond with the input data and the columns correspond with the
unwrapping method employed.

From the experimental results shown in Fig. 4.5 we can see that, the proposed rounding-least-squares
method reaches a higher accuracy with respect to the FFT, quality-guided, and branch-cut methods. More-
over, for the fringe projection case, the MCNF method and our proposal reach an identical unwrapped
solution (they have a difference of at the most 3×10−14 rad, Fig. 4.5(eg)). In Fig. 4.5, the error graphs (ec),
(eh), and (em) exhibit the distortion effect inherent in the FFT method. The quality-guided method returns
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4. Phase-unwrapping algorithm by a rounding-least-squares approach

Figure 4.5: (1st row)-(3rd row) The respective unwrapping phase computed by: (1st column) the MCNF
method, (2nd column) the proposed rounding-least-squares algorithm, (3rd column) the FFT method, (4th col-
umn) the quality-guided method, and (5th column) the branch-cut method. (4th row)-(6th row) The respective
absolute error where the solutions by the MCNF method are used as a baseline.

an acceptable result if dislocation defects are not important. Finally, for the noisy wrapped map shown in
Fig. 4.4(a), the unwrapped solution by the branch-cut method, Fig. 4.5(ue), presents error by divergent
paths as it is verified in Fig. 4.5(ee).

Fig. 4.6 shows the computer time required in these experiments. Similar to the computer simulation in
the previous subsection: our proposed algorithm and the FFT method require the least amount of computer
time. More computer resources are demanded by the MCNF and the branch-cuth methods. The most
computationally intensive is the quality-guided method. It is worth mentioning that, for the processed
experimental data, our proposal and the FFT method require computer time of less than one second while
the other tested algorithms demand from a few seconds to several minutes.
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Figure 4.6: Computing time required to obtain the results shown in Fig. 4.5. The hardware used was a 2.5
GHz laptop.

4.5 | Discussion

Since noise is very damaging in phase-unwrapping, making it unstable and time consuming, a pre-processing
stage dedicated to filter the wrapped phase map is a pertinent strategy [119, 126]. However, the filtering
procedure has its own issues such as the filter tuning, the smearing of regions with dense fringes, and the
trend to distort the phase distribution. In this context, the proposed algorithm is more convenient because
advanced filtering procedures are not required and the phase distortion is avoided. The proposal is based on
a simpler structure reaching a high robustness from a low computational effort.

Another issue in phase-unwrapping is the breaking of the fringes. Such damages may be due to,
for example, holes and discontinuities of the phase distribution. Because the proposed algorithm assumes
continuity of the phase distribution, the proposal cannot address the breaking of the fringes generated by
true discontinuities of the phase distribution. We believe that this algorithm can overcome this situation
by including a weighting method such as the regularized least-squares approach. However, this possibility
is left as future work. This work is focused on the development of the alternative rounding-least-squares
approach for phase unwrapping and highlight its good properties such as simplicity, accuracy, robustness and
computational efficiency.

4.6 | Conclusion

A user-free and computationally efficient global phase-unwrapping algorithm based on a simple rounding-
least-squares approach was proposed. Unlike the conventional phase-unwrapping methods which integrate
the gradient of the unwrapped phase, the proposal operates over the gradient of the phase jumps component.
Because of this, the proposed algorithm is less sensitive to residue-spreading and over-smoothing effects.

The performance of the proposed algorithm was compared, in both simulated and experimental cases,
with the Minimum Cost Network Flow (MCNF), the phase-unwrapping by fast Fourier transform (FFT),
the quality-guided, and the branch-cut methods. The results have shown that the higher accuracy level is
obtained by the MCNF method and the lower computing time is required by the FFT method. In this
context, our proposed algorithm exhibits a good performance in the sense that a high accuracy is reached
(similar to the MCNF method) by demanding low computational resources (similar to the FFT method).

Due to the simplicity and robustness of this proposal, its computational performance, and that it does
not require user intervention, the suggested phase-unwrapping scheme could find use in automatic real-time
applications.
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Chapter 5

Phase-shifting by lateral
displacement of the illumination

source

Real understanding of a thing comes from
taking it apart oneself, not reading about it in
a book or hearing about it in a classroom.

Robert B. Laughlin
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The heart of any Phase-Shifting Interferometry system is the phase shifter device. In general, the phase
shifter devices are expensive and/or complex to implement. The advances on fringe-processing algo-

rithms can be exploited to relieve the high requirements on such devices. Therefore, it is possible to focus in
the design of simpler optical setups.

This chapter discuss the idea of to change the spatial position of a point laser source to induce phase
shifts. The principles are given based on the Twyman-Green interferometer. Thus, a simple and inexpensive
phase-shifting interferometer is produced. The experimental and theoretical results show the feasibility of
this unused phase-shifting technique.
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5.1. Introduction

5.1 | Introduction

Phase-Shifting Interferometry (PSI) has become a versatile powerful tool used widely in a variety of precise
optical measurement applications [1]. In contrast with the spatial carrier based methods, PSI is especially
attractive because it can ensure major sensitivity, higher accuracy, and maximum spatial resolution of the
calculated phase [3].

The principle of phase-shifting methods is very simple. In general, it consists on two steps [1]:

1. A fringe-pattern is recorded for each phase step induced on the reference wavefront, and

2. The acquired fringe-patterns are processed to obtain the encoded phase distribution (in wrapped for-
mat).

It is worth mentioning that, in the first step, it is not need that the phase shift to be calibrated neither
controlled because the availability of generalized phase-shifting algorithms such that the presented in the
chapter 3.

Thus, it is precise to focus on simplify the experimental issues of the optical setup. Particularly, in
the techniques for induce the phase shifts.

The piezo-electric device is the most employed element to induce phase shifts in interferometrical test [?,
26,82]. However, this device is very expensive and requires peripheral equipment such as amplifiers and control
systems. Some other alternatives are the use of liquid crystal phase modulators [151], diffraction gratings
[152], Bragg cells [153], polarization elements [154], the use of multiple wavelengths [155] or wavelength-
shifting [8, 156], amplitude modulators [20], among others. Unfortunately, these methods require complex
equipment or controlled environment conditions. A different approach is to exploit the mechanical vibrations
from the operation environment [157]; however, the data processing is computationally exhaustive.

This chapter presents a simple and inexpensive phase-shifting technique. This technique is based on
the phase shift induced when the illumination angle in a plane-parallel interferometer is varied [?]. This effect
is exploited in the Twymann-Green interferometer where a point laser source is moved perpendicularly to the
optical axis. It is worth mentioning that the proposed optical setup is different to induce a tilted wavefront
(i.e., to generate an spatial carrier) neither a shearing interferometer.

Notation

In the following, the vectorial notation is employed. The vectors will be indicated by bold symbols,
for example d. The magnitude is measured by the Euclidean norm and it is indicated by no bold
symbols, for example d = ∥d∥ with ∥·∥ denoting the Euclidean norm. Unitary vectors (including the
unitary coordinate vectors) are hatted, for example d̂ = d/ ∥d∥, x̂, ŷ, ẑ, etc. The vectorial quantities
are described from its magnitude and direction, for example d = dd̂. Finally, the scalar and vectorial
products between two vectors, say d and p, will be indicated as d · p and d× p respectively.
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5. Phase-shifting by lateral displacement of the illumination source

5.2 | Theoretical principles

5.2.1 | Lateral displacement on the lens focal plane of the point source

A laser point source in the configuration shown in Fig. 5.1(a) is usually employed as the illumination system
in the Twyman-Green interferometer. Now, it is supposed that the point source is displaced laterally from
the optical axis a quantity given by d = dd̂, where d̂ is a unitary vector perpendicular to the optical axis as
shows Fig. 5.1(b). The spherical wave emerging from the point source reach the input plane of the lens L is
given by

A(p,d) =
A0

r
exp[ikr],

where p = (x, y) is a spatial variable with Cartesian coordinates x and y, f is parallel to the optical axis with
f be the focal length of the lens L, r = ||f + p− d|| is the length between the point source and the point p
on the input plane of L, A0 is an real-valued amplitude, k = 2π/λ is the wave number, λ is the wavelength,
and i denotes the imaginary unit (i2 = −1).
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Figure 5.1: (a) Collimation system with a centered point source. (b) Tilted plane wavefront obtained by
the lateral displacement of the source. (c) Twyman-Green interferometer illuminated with a tilted plane
wavefront. (d) Alternative representation of Fig. 5.1(c).

If experimentally is satisfied that f ≫ ∥p− d∥ (focal length of the lens is longer than its diameter
and the displacements d), then is valid second order the approximation of r (truncated Taylor series at the
second order term); i.e., r ≈ f +(p2+d2− 2p ·d)/2f . Substituting this approximation in (5.2.1) the paraxial
approximation of the complex field A(p,d) is obtained as

A(p,d) ≈ B0 exp

[
i
k

2f

(
p2 + d2 − 2d · p

)]
, (5.1)

where B0 = (A0/f) exp[ikf ] is a complex amplitude. Notice that the first order approximation r ≈ f for the
amplitude A0/r ≈ A0/f in (5.1) was used1.

When the wavefront A(p,d) is propagated inside the lens L and reach the output plane of L, the
complex amplitude A(p,d) losses its quadratic phase term exp[ikp2/(2f)]. Thus, in the output plane of L is
obtained the tilted plane wavefront

B(p,d) = B0 exp

[
i
k

2f

(
d2 − 2d · p

)]
. (5.2)

To determine the tilt of the plane wavefront (5.2), we require a vector h perpendicular to such a
wavefront. This vector can be defined as the vectorial product of two linearly independent vectors u, v on

1Because the wavelength in the visible range, the phase of a wave changes faster that its amplitude [158]. Thus, the paraxial
approximation consists on a second order approximation for the phase and a first order approximation for the amplitude.
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5.2. Theoretical principles

the wavefront. By simplicity, d = ŷ is considered. The first vector can be defined for the case where p = x̂.
Then p and d are perpendiculars and will be a null phase contribution at p. Thus, the vector u is defined as

u = x̂.

Now, the case where p = ŷ is considered. Then p and d are parallel and will be an phase contribution of
d/f in the direction of ẑ. Thus, the vector v is defined as

v = ŷ +
d

f
ẑ.

With the vectors u and v the perpendicular vector h is constructed as

h = u× v = − d
f
ŷ + ẑ.

With this, we conclude that the plane wavefront (5.2) propagates in the direction of h having a tilt of

tan θ = −d/f, (5.3)

with respect to the optical axis. Notice that, this result agrees with the one directly obtained from geometrical
arguments as it is shown in Fig. 5.1(b).

5.2.2 | Nonzero angle illumination in the Twyman-Green interferometer

Now, the Twyman-Green interferometer is illuminated with the wavefront B(p,d) as shown in 5.1(c) or,
equivalently, 5.1(d). It is not loss of generality to assume that the wavefront B(p,d) on the output plane of
the lens L is the same at the plane of the mirrorMr because the additional constant phase by the propagation
from the output plane of L to the plane of Mr can be omitted.

Accordingly, at the point p on the observation plane OP , we have the superposition of the beams
B(p2,d) exp[iϕ(p2)] and B̃(p2,d) coming by reflection from the test and reference mirrors, respectively, as
shows Fig. 5.1(d). Notice that the wavefront coming from the test mirror to the plane OP is the incident
wavefront B(p2,d) plus an additional phase term exp[iϕ(p2)] associated with the aberrations of the mirror
surface.

The intensity distribution on the observation plane can be described as

I(p,d) = |B(p2,d) exp[iϕ(p2)] + B̃(p2,d)|2, (5.4)

with | · | denoting the module. It is worth mentioning that the beam B̃(p2,d) is the beam B(p1,d) (reflected
from the reference mirror) plus an additional phase term2:

ρ = 2D

[
1 +

(
d

f

)2
]1/2

, (5.5)

and a translation:

σ = p2 − p1 = σd̂, with σ = −2D
d

f
; (5.6)

this is,
B̃(p2,d) = B(p2 − σ,d) exp[ikρ]. (5.7)

2The additional phase term ρ corresponds to the optical path traveled from p1 on the mirror Mt, reflects on the mirror Mr

and reaches again the plane of the mirror Mt but at the point p2.
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5. Phase-shifting by lateral displacement of the illumination source

From the equation (5.2), we have that

B(p2 − σ,d) = B0 exp

[
i
k

2f

[
d2 − 2d · (p2 + σ)

]]
= B0 exp

[
i
k

2f
(d2 − 2d · p2 + 2dσ)

]
= B(p2,d) exp

[
i
k

f
dσ

]
.

Then, the equation (5.7) can be restated as

B̃(p2,d) = B(p2,d) exp

[
i
k

f
dσ

]
exp[ikρ]. (5.8)

It is necessary to define the translation vector:

τ (d) = p− p2 = τ(d)d̂, with τ(d) = −g d
f
, (5.9)

to consider the fact that the interference occurring at the point p2 on the plane ofMt is detected at the point
p on the observation plane OP .

Considering the equation (5.8) and (5.9), we have that the irradiance described by (5.4) can be rewritten
as

I(p,d) = |B(p2,d) exp[iϕ(p2)] + B̃(p2,d)|2

= |B(p2,d) exp[iϕ(p2)] +B(p2,d) exp

[
i
k

f
dσ

]
exp[ikρ]|2

= |B(p2,d)|2 + |B(p2,d)|2 + 2|B(p2,d)|2 cos
[
ϕ(p2)−

k

f
dσ − kρ

]
= 2a+ 2a cos [ϕ(p− τ (d)) + δ(d)] ,

(5.10)

where a = |B(p2,d)|2 = A2
0/f

2, and δ(d) = −k(σd/f + ρ) is the phase shift.

Substituting the variables ρ, Eq. (5.5), and σ, Eq. (5.6), in δ(d), we have

δ(d) = −k(ρ+ σd/f)

= −2Dk


[
1 +

(
d

f

)2
]1/2

−
(
d

f

)2
 .

Because d2/f2 ≪ 1, it is valid the approximation:[
1 +

(
d

f

)2
]1/2

≈ 1 +
1

2

(
d

f

)2

.

Thus, the phase shift δ(d) can be approximated as

δ(d) ≈ −2Dk

[
1 +

1

2

(
d

f

)2

−
(
d

f

)2
]

= Dk

(
d

f

)2

− 2Dk.
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Figure 5.2: Experimental setup for phase-shifting interferometry by lateral displacement of the laser point
source in the Twyman-Green interferometer. The laser source (LA), the microscope objective (OM), and the
pinhole (P) are mounted on the manual linear translation stage (E). The lateral displacements d are provided
by the micrometer screw (T). The fringe-pattern on the observation screen (OP) are recorded by the camera
(C) through the imaging system (SFI).

Notice that the term −2Dk is a constant phase or offset (with respect to the lateral displacement d of the
light source) and, therefore, it can be omitted. Thus, we have that the resulting phase shift is

δ(d) ≈ Dk

(
d

f

)2

. (5.11)

From Eq. (5.10), we can see that, when the magnitude of d is constant, there are two effects simulta-
neously in the intensity distribution I(p,d):

1. A quadratic phase shift δ(d), given by (5.11).

2. A linear translation τ of the fringe-pattern, given by (5.9).

Both effects are outlined in Fig. 5.3.

It is worth mentioning that the sensitivity of the phase shifter can be tuned by the relative distance
D between the mirrors Mt and Mr. For example, for a lateral displacement of 2 mm, a collimation lens with
focal length of f = 0.5 m, and a laser source with wavelength λ = 633 nm; the phase shift 2π rad can be
obtained if the distance D is set to δf2/(kd2) = 3.96 cm. If more phase shift gain is required, a greater
distance D is necessary and vice versa.

In the next section, the feasibility of this principle is verified by experimental measurements.

5.3 | Experimental validation

The feasibility of this proposal is experimentally verified as follows. We consider the standard Twyman-Green
Interferometer arrangement depicted in Fig. 5.2. The light source used was a He–Ne laser, with wavelength
λ = 633 nm. The laser beam was expanded and filtered by a microscope objective and a pinhole, respectively.
The pinhole was located at the focal point of a collimating lens with focal length of f = 0.5 m.
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Figure 5.3: The phase shift δ and fringe-pattern translation τ effects induced by the lateral displacement of
the laser point source.

The collimated wavefront obtained was split by a non-polarizing cube beam splitter. Two beams were
produced and they were reflected by the reference Mr and test Mt mirrors. The test mirror surface was
deformed in order to obtain a distorted wavefront. The fringe pattern due to the interference of these two
reflected beams was observed on a screen on the observation plane OP . The fringe patterns was acquired by
a gray-scale 8-bit CCD camera with a resolution of 768× 1008 pixels.
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Figure 5.4: (a) and (b) Two adjacent phase shifted interferograms acquired with the proposed PSI technique.
(c) Wrapped phase distribution recovered by processing the two interferograms shown in Figs. 5.4(a) and
5.4(b) with the suggested GPSI algorithm.

The lateral source displacement was performed by mounting the laser source, the microscope objec-
tive and the pinhole on a manual linear translation stage. The displacement resolution reached with this
mechanism is of 10 µm. We considered a lateral source displacement of d = ±2 mm with steps of 100 µm.
We choose the relative distance D = 3.96 and 7.91 cm between the mirrors in order to obtain a phase shift
δ(2 mm) = 2π and 4π rad, respectively. The observation plane is placed to the distance g = 11 cm from the
reference mirror Mr. For each progressive displacement step, a phase shifted interferogram was recorded.
Thus, for each value of D, 41 interferograms were acquired. Of these interferograms, we show two adjacent
interferograms in Fig. 5.4 as an example.

The interferograms were processed to extract both the phase shift and the wrapped phase distribution
by the GPSI algorithm described in §?? and reported in [71]. The fringe-pattern translation was determined
by the method exposed in the appendix A. The calculated phase shift and the image translation are shown
in Figs. 5.5(a) and 5.5(b), respectively. The obtained experimental data values presents a mean error of
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5.3. Experimental validation

0.06 rad (with standard deviation of 0.10 rad) for the phase shift, and 1.31 µm (with standard deviation of
11.42 µm) for the image translation. These results are good considering that the displacement is induced
manually.
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Figure 5.5: (a) Phase shift and (b) image translation measurements versus lateral source displacement.
This experiments correspond to the relative distances between the mirrors of (red) D = 3.96 cm, and (blue)
D = 7.91 cm.

It is worth mentioning that both the nonlinear phase shift and its deviation from the nominal values are
not a problem because an appropriate GPSI algorithm can be implemented. Thereby, only two interferograms
with an arbitrary and unknown phase shift are sufficient to wrapped phase extraction. For example, the results
obtained with this algorithm when it processes the two interferograms shown in Figs. 5.4(a) and 5.4(b) are:
a phase step of 0.898 rad, and the wrapped phase distribution shown in Fig. 5.4(c).

With respect to the image translation issue, it is very small (in the described experiment, τ = 37.82
and 29.92 µm for D = 7.91 and 3.96 cm, respectively). In addition, a scaling of this translation is performed
by the camera’s imaging system. In our particular case, the size of the interferograms was of 3× 3.9 cm and
the target’s size of 2.7× 3.5 mm. Thus, the image translation is reduced to 3.4 and 2.7 µm for D = 7.91 and
3.96 cm, respectively. But, since the pixel size is 3.5 µm, such translations are not observable. Moreover, for
large translations, because the translation is a linear function of the displacement, the numerical correction
is very simple and consists of a translation of all the pixels of the interferogram by a certain number of pixels.
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5. Phase-shifting by lateral displacement of the illumination source

5.4 | Conclusion

A simple and inexpensive phase shifter by lateral source displacement to phase-shifting interferometry was
proposed. Unlike the conventional PZT techniques, where fine nanometric translations are required, in this
novel technique a coarse and miscalibrated translation stage obtained with a micrometric screw is sufficient.
The phase shifter sensibility can be tuned by the optical path difference between the interferometer’s mirrors.

Some phase shift problems such as the quadratic phase shift, miscalibration, and other unknown
possible error sources are overcome by the use of an appropriate Generalized Phase-Shifting Interferometry
(GPSI) algorithm to wrapped phase extraction. In this work, the automatic real-time GPSI algorithm by
parameter estimation presented in §3.4 was used. The translation of the interferogram image can be easily
corrected by a simple pixels shift. Even, the translation effect can be negligible by either setting the relative
distance between the mirrors or adjusting the camera’s image amplification.

A successful implementation of this technique in the Twyman-Green Interferometer was reported. The
experimental results shown that the proposed scheme is a simple and inexpensive alternative to interfero-
metrical phase evaluation. We believe that other interferometric systems such as the Fizeau interferometer
(which is very important due to its industrial applications) and the Electronic Speckle Pattern Interferometry
could incorporates this approach.
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Appendix A

Image translation by lateral source
displacement

Science tells us we are merely beasts, but we
don’t feel like that. We feel like angels trapped
inside the bodies of beasts, forever craving
transcendence.

Vilayanur S. Ramachandran
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The lateral displacement of the laser point source provides two effects in the fringe-patterns: a phase-
shifting, and an image translation. The phase-shifting is need for wrapped phase extraction. However,

the image translation is an effect that must be characterized for establishment of its influence and, if necessary,
compensate it into the computational routines of fringe analysis.

Theoretically, we have deduced the quantity of translation as function of the provided displacement
of the illumination source. However, for validation purposes, such translation must be measured experimen-
tally. In this appendix a method to measure the image translation induced by lateral displacement of the
illumination source is presented.
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A.1. Experimental setup

A.1 | Experimental setup

When the laser point source in a Twymann-Green interferometer is laterally displaced, both a phase shift
and a fringe-pattern translation are induced.

To measure the image translation, in the test arm is placed a flat mirrorM1 with the half area covered
as shows Fig. A.1(a). Thus, ideally an binary interferogram brig-dark as shows Fig. A.1(b) is obtained. The
region corresponding with the covered mirror will be dark, while the another part will be brig1.

(b) (c)

	  	  

	  	  

BS

OP

M1

M2Laser
source

Spatial
filter

Collimating
lens

(a)

d	  

Figure A.1: (a) Experimental setup to measure the image translation when the illumination source is
displaced laterally. (b) Ideal interferogram. (c) Experimental interferogram.

In the case of ideal interferograms, say Fig. A.1(b), the translation measurement is trivial: it is
sufficient to process a single row of the image to find the point where the maximum-minimum (max-min)
intensity occurs [e.g. the highlighted data by the horizontal yellow line in Fig. A.1(b)]. Unfortunately, this
method is not valid when experimental interferograms as the shown in Fig. A.1(c) are processed.

A.2 | Image processing

A.2.1 | Image row average

For processing experimental interferograms, it is convenient to process the whole frame in order to reduce
the intensity variations due to random noise, diffraction fringes, and other error sources. For example, Fig.
A.2(c1) shows the intensity profile along the yellow line in the interferogram shown in Fig. A.1(c).

An efficient way to attenuate the noise effects is to exploit the fact that the transition max-min intensity
region in the frame is a straight line (near horizontal). Thus, all rows of the frame can be fitted to a single
curve by taking its average [a least-squares fitting to a zero-order polynomial (a constant)]. Fig. A.2(c2)

1This is not valid for a phase shift of π rad (which leads to destructive interference). However, this is a particular (and
extreme) case restricted to a single point in the interval [0, π] rad. Moreover, experimentally such a case is unlikely for the whole
interferogram because the non-ideal flatness of the mirror and its inexact alignment.

86



A. Image translation by lateral source displacement

500 1000 1500 2000

50

100

150

200

250

(a)

Position [pixels]

In
te

n
s
it
y

 

 

(c1)

(c2)

(c3)

800 850 900 950 1000 1050

50

100

150

200

250

(b)

Position [pixels]

In
te

n
s
it
y

 

 

(c1)

(c2)

(c3)

Figure A.2: (a) Intensity profile of the interferogram shown in Fig. A.1(c). (b) Zoom of (a) in the interval
indicated by the horizontal lines (interval from 770 to 1050 pixels ). (c1) Intensity of the central row only
from the interferogram. (c2) Intensity average from the whole frame. (c3) Fitted sinusoidal curve to the
average intensity (c2) in the marked interval.

shows the result of this procedure applied to the interferogram shown in Fig. A.1(c). It is evident that a
significant noise reduction was achieved by this simple procedure.

A.2.2 | Transition point

Now, we take advantage of the previous knowledge about the point where the transition occurs. From §5.2
we known that the transition point must change as the translation τ(d) given by (5.9). For convenience
purposes, we rewrite this equation here:

τ (d) = p− p2 = τ(d)d̂, with τ(d) = −g d
f
. (A.1)

This translation is linear with respect to the lateral displacement d of the light source. Thus, taking as
reference an interferogram at d = 0, we can calibrate the transition point. With this information, it is
sufficient to analyze the intensity curve in a neighborhood around the predicted transition point for all
subsequent value of d.

From Fig. A.2(a) we can see that the transition point is between a ridge and a valley. Then, we
consider a neighborhood τ(d)± v around the transition point τ(d) (for an appropriate value v such that the
neighborhood includes a ridge and a valley). Thus the transition curve can be approximated to a sinusoidal
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A.3. Theoretical principles

curve as shows Fig. A.2(c3). The procedure to fit a sinusoidal curve and how to measure the actual translation
from the fitted curve is shown below.

A.2.3 | Approximation of the transition curve by a sinusoidal curve

The problem of parameter estimation of a sinusoidal model is, in general, nonlinear. To solve this kind
of problems, there are several numerical methods such as the Newton, Gauss-Newton, and the Levenber-
Marquardt methods. However, these methods converge (if they do) to a local optimum. Moreover, they
require a good initial guess for computing a better solution by an iterative proceeding. Three disadvantages
can be identified:

1. An initial guess is required,

2. The optimum is local, even cannot be found (when the iterative procedure does not converge), and

3. The procedure is computationally exhaustive.

To overcome the above drawbacks, we suggest the following method. Instead of to estimate simulta-
neously the all parameters of a sinusoidal function (a nonlinear problem), such parameters are estimated in
sequence. Thus, the original nonlinear problem is reduced to a cascade of linear problems. This method is
similar to the phase extraction presented in the chapter 3. The main advantages of this approach are:

� Initial guess is not necessary,

� Global convergence,

� Efficient computational algorithms (iterative loops are not used).

Therefore, simple and fast computer routines are obtained appropriate to real-time applications. In the
following, the theoretical principles are described.

A.3 | Theoretical principles

Let {xi, yi} (i = 1, 2, · · · , N), with x1 < x2 < · · · < xN , be an experimental data set obtained by sampling a
process of the form

yi = ā− b̄ sin(ω̄xi), (A.2)

where the constants ā, b̄, and ω̄ are the parameters of the model. We proceed to approximate the given data
values yi to a sinusoidal function, defined for x in the interval2 [−1, 1], as

f(x) = a− b sin(ωx− α), (A.3)

where a, b, ω, and α are constants. We can to estimate the value of a as an average (a least-squares fitting
to a constant) of the data set yi as

a =
1

N

N∑
i=1

yi. (A.4)

2The interval [−1, 1] is chosen for convenience. For this interval, the position τ(d) corresponds with x = 0 and τ(d) ± v
corresponds with x = ±1.
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A. Image translation by lateral source displacement

By subtracting a from the experimental data yi and computing the square we have

(yi − a)2 ≈ b̄2 sin2(2πω̄xi) =
1

2
b̄2 +

1

2
cos(2ω̄xi).

Thus, the quantity b̄2/2 can be estimated on a similar form than a, namely

1

2
b2 =

1

N

N∑
i=1

(yi − a)2, (A.5)

where the desired parameter is obtained by solving the above equation for b (multiplying by 2 and computing
the square root). Now, with the estimated parameters a and b, we proceed to the normalization of the
experimental data by

zi = sat

[
yi − a

b

]
≈ sin(ω̄xi), para b ̸= 0,

where sat[·] denotes the saturation function defined by the equation (1.38):

sat
(
Ĩk

)
=


1 if Ĩk > 1,

Ĩk if |Ĩk| ≤ 1,

−1 if Ĩk < −1.

with | · | denoting the absolute value.

To obtain the parameters ω̄ of the line 2π ¯ωxi we compute the inverse sine of z as

ri = arcsin zi ≈ ω̄xi.

The resulting curve ri is a triangular function corresponding to a line wrapped in the interval [−π/2, π/2] by
a sinusoidal function.

A property of the triangular function ri is that its derivative is a constant but the sign changes at the
points 2πω̄xi = (2n+ 1)π/2 with n = 0,±1,±1, · · · . Assuming that the line is monotonically increasing, the
sign of the function can be ignored3. The derivative of ri is numerically computed as

r′i ≈
∣∣∣∣ ri+1 − ri
xi+1 − xi

∣∣∣∣ , i = 1, 2, · · · , N − 1.

where | · | denotes the absolute value. It is worth mentioning that the differentiation is an ill-posed problem
(therefore it is unstable). However, we can “restore stability” by considering that the second derivative r′′i is
zero. In this way, we obtain the parameter ω as

ω =
1

N − 1

N−1∑
i=1

r′i. (A.6)

Now we have estimated the parameter ω, it can be computed the parameter α by writing the equation (A.3)
as

f(x) = a− b sin(ωx) cosα+ b cos(ωx) sinα

= a− ξ sin(ωx) + ζ cos(ωx),
(A.7)

3If it is expected that the line is monotonically decreasing, then the absolute value of the derivative must be multiplied by
−1.
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with ξ = b cosα, ζ = b sinα and where the trigonometric identity sin(x + y) = sinx cos y − cosx sin y was
applied. The equation (A.7) can be solved for a, ξ and ζ in the least-squares sense as4aξ

ζ

 = A†Y, (A.8)

where

A =


1 − sin(ωx1) cos(ωx1)
1 − sin(ωx2) cos(ωx2)
...

...
...

1 − sin(ωxN ) cos(ωxN )

 ,
and

Y =
[
y1 y2 · · · yN

]T
.

Finally, with the computed vector (A.8), the parameter α is retrieved by

α = arctan(ζ/ξ). (A.9)

The above described procedure is implemented in the MATLAB software as the function fitSin().
For illustration purposes, Fig. A.3(Left) shows the resulting computer code5. The use of this computer
function is illustrated by the script shown in Fig. A.3(Right). This script generates the plots shown in Fig.
A.2.

A.4 | Relationship between phase shift and transition point

Now, just need to show that the parameter α is linked to the difference between the predicted transition
point τ(d) (x = 0) and the actual transition one. According to the theoretical transition point τ(d), the
equation (A.2) must be centered in the considered neighborhood, i.e., at α = 0. However, experimentally it
is expected that the fitted sinusoidal function is not in phase; i.e., the transition point, instead of being at
x = 0, is at x = x0. Considering the change of coordinates x̃ = x− x0 and substituting in (A.2), we have

yi = ā− b̄ sin(ω̄x̃i) = ā− b̄ sin(ω̄xi − ω̄x0),

where it was possible to include the parameter α in (A.3) by the relation with the actual transition point x0:

x0 = α/ω̄ ≈ α/ω. (A.10)

With this we conclude that the difference between the theoretical transition point and the experimental one
is x0, and this quantity is computed from the estimated parameters ω and α in (A.3).

To illustrate the whole operation of this image translation measurement method, an example is pre-
sented showing the intermediate steps from the beginning until the determination of the transition point
x0.

4We can consider the normalized data values zi (they were obtained after of two estimations) and then to solve the most
simple equation g(x) = cos(ωx) sinα− sin(ωx) cosα. However, it is more convenient to consider the original data values yi and
solve the equation (A.7). This choice increases slightly the computational cost but the accuracy is improved because some error
sources due to the approximation are avoided.

5This is a prototype computer code. It is not optimized and may not be appropriate for end-user applications.
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A. Image translation by lateral source displacement

function [w alp fit] = fitSin(y) 
% Fitting the function f(x) = a - b*sin(wx + alp) 
% by estimation of the parameters a, b, w and alp. 
% Input: intensity curve data. 
% Return: w, alpha and the fitted function 
  
ny = numel(y); 
x = 2*(0:ny-1)'/(ny-1) - 1; 
  
a = sum(y)/ny;           % Estimation of a 
temp = (y - a).^2; 
b = sqrt(2*sum(temp)/ny);% Estimation of b 
  
% Data normalization 
z = (y - a)/b; 
for k=1:ny 
    if z(k) > 1;        z(k) = 1; 
    elseif z(k) < -1;   z(k) = -1; 
    end 
end 
  
r = asin(z); 
dif = abs(r(2:end) - r(1:end-1)); 
dif = dif/(x(2)-x(1)); 
w = sum(dif)/(ny-1);     % Estimation of w 
  
AA  = [ones(ny,1) -sin(w*x) cos(w*x)]; 
Th  = (AA'*AA)\AA'*y';   % Estimation of a,xi,zeta 
fit = AA*Th;             % Fitted function 
alp = atan2(Th(3),Th(2));% Estimation of alpha 
  
end 

tau = 910; % Value obtained by manual calibration 
v   = 140; % Value obtained by manual calibration 
  
[m n] = size(I0);       x = 1:n; 
  
y = sum(I0,1)/m;          %Intensity curve 
  
% Data in the invertal [tau-v,tau+v] 
x_i = x(tau+(-v:v));    y_i = y(tau+(-v:v)); 
  
[w alp fit] = fitSin(y_i);%Fitting a sine function 
  
% Data to mark with horizontal lines 
% the data inverval 
x_i1 = (tau-v)*[1 1]; 
x_i2 = (tau+v)*[1 1]; 
y_i1 = [1 270]; 
  
% Plots 
subplot(1,2,1);plot(x,I0(m/2,:),'-g',x,y,'-r',... 
    x_i,fit,'-b',x_i1,y_i1,'-k',x_i2,y_i1,'-k') 
axis([1 n 1 270]);grid on 
title('(a)');xlabel('PosiciÛn en pixeles') 
ylabel('Nivel de intensidad') 
legend('(c1)','(c2)','(c3)') 
  
subplot(1,2,2);plot(x,I0(m/2,:),'-g',x,y,'-r',... 
    x_i,fit,'-b',x_i1,y_i1,'-k',x_i2,y_i1,'-k') 
axis([tau-v tau+v 1 270]);grid on 
title('(b)');xlabel('PosiciÛn en pixeles') 
ylabel('Nivel de intensidad') 
legend('(c1)','(c2)','(c3)') 
	  

Figure A.3: (Left) Proposed method to fit a sinusoidal curve implemented in MATLAB software by the
function fitSin(). (Right) Script to test the function fitSin() to generate the plots shown in Fig. A.2. In
this script, I0 is a matrix which contains the interferogram in gray-scale to be processed.

Example 10 (Sinusoidal curve fitting). We consider the experimental data values yi shown in Fig.
A.2 where i ∈ [τ − v, τ + v], with τ = 905 and v = 140, defined on the interval [−1, 1]. Fig. A.4(a)
shows the data yi and the estimated parameter a by applying the equation (A.4). By using the equation
(A.5), we obtain the quantity b2/2, Fig. A.4(b), which allows us to estimate the parameter b. With
the computed values a and b we compute zi, Fig. A.4(c), which represents the normalized version
of the original data set yi. The arc sine of the normalized data are shown in Fig. A.4(d). The
resulting numerical derivative r′i and the parameter ω, estimated by applying (A.6), are shown in Fig.
A.4(e). Finally, by solving the matrix equation (A.8), the function f(x) (A.7) is fully determined.
The superposition of the experimental data yi and the fitted curve f(x) is shown in Fig. A.4(f). The
localization of the measured transition point x = x0, computed by using (A.10), and the expected one
x = 0 are highlighted in Fig. A.4(f) by the corresponding horizontal lines.
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Figure A.4: Sinusoidal curve fitting by the proposed cascade parameter estimation approach. (a) Estimation
of the parameter a. (b) Estimation of b2/2. (c) Normalized data. (d) Arc sine of the normalized data. (e)
Estimation of the parameter ω. (f) Fitted curve to the experimental data and the points expected transition
point x = 0 and the measured one x = x0.
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Appendix B

Adquisición de datos y
automatización

En matemáticas uno no entiende las cosas, se
acostumbra a ellas

John Von Neumman
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Automatización se puede definir como aquella acción de equipar un sistema con actuadores, sensores y
una unidad de procesamiento apropiados con la finalidad de que el sistema realice una tarea deseada

o se mantenga en un estado de equilibrio sin necesidad de intervención del usuario. Entre las ventajas más
evidentes que trae la automatización son: capacidad de respuesta rápida, altos niveles de repetibilidad y
grandes volúmenes de producción.

Aqúı describiremos la automatización de la extracción de fase desde interferogramas generados con el
interferómetro de Michelson. En éste caso, la cámara CCD, los elementos piezoelétricos y una computadora
toman el papel del sensor, actuadores y unidad de procesamiento, respectivamente. Las ventajas que se
buscan son: realizar mediciones en intervalos de tiempo cortos (respuesta rápida), reducir las incertidumbres
experimentales (alta repetibilidad), y obtener y procesar un conjunto grande de datos experimentales (grandes
volúmenes de producción).
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B.1. Descripción del sistema

B.1 | Descripción del sistema

Consideremos un arreglo interferométrico cualquiera como se esboza en Fig. ??.

B.2 | MATLAB y Simulink

MATLAB, desarrollado por MathWorks, es una potente plataforma de cómputo numérico que permite la
manipulación de matrices, creación de gráficas, implementación de algoritmos, creación de interfaces, etc.

Simulink, también desarrollado por MAthWorks, es una herramienta para la modelación, simulación
y análisis de sistemas dinámicos. Simulink es empleado principalmente in teoŕıa de control y procesamiento
digital de señales para simulación y diseño.

B.3 | Data Acquisition Toolbox

Éste toolbox es un software que permite configurar dispositivos de hardware externos para leer o escribir
datos.

B.4 | Tarjeta de adquisición de datos (NI USB-6009 DAQ)

El dispositivo NI USB-6009 DAQ de National Instruments, es una tarjeta de adquisición de datos. Algunas
de sus caracteŕısticas son:

� 8 entradas analógicas (12-bit, 10 kS/s),

� 2 salidas analógicas (12-bit, 150 S/s)

� 12 I/O digitales,

� Conexión USB, no requiere alimentación externa.

B.5 | Adquisición de datos

Los sistemas de adquisición de datos incorporan el manejo de señales, sensores, actuadores, acondicionamiento
de señales, adquisición de datos desde otros dispositivos y aplicaciones de software. En resumen, Adquisición
de datos es el proceso de:

� Adquirir señales desde fenómenos del mundo real,

� Digitalizar las señales,

� Analizar, presentar, almacenar datos.
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B. Adquisición de datos y automatización

Podemos pensar en los DAQ como el hardware que actúa como interface entre la computadora y el mundo
externo.

Un dispositivo DAQ usualmente tiene las funciones

1. Entradas y salidas analógicas,

2. Entradas y salidas digitales,

3. contadores/timers.

B.6 | Drivers y software de aplicación

Los drivers son software que son intermediarios entre el hardware y el software aplicación. Los drivers evitan
la necesidad de programación de alta complejidad para comunicarse con el dardware. Para el dispositivo NI
USB-6009 DAQ, es necesario instalar el driver NI-DAQmx que proporciona National Instruments. Éste se
puede descargar en www.ni.com/.

El software de aplicación consiste básicamente en procesar las señales de entrada y generar señales de
salida. Aqúı las complejas rutinas de comunicación con el hardware son transparentes gracias a los drivers.
El software de aplicación generalmente es implementado en lenguajes de alto nivel tal como Visual Studio,
LabVIEW, MATLAB, etc.

B.7 | MAX – Measurement and Automation Explorer

Éste es software que proporciona acceso a los dispositivos y sistemas de National Instruments. MAX permite

� Configurar hardware y software de National Instruments,

� Crear y editar canales, tareas, interfaces, escalas e instrumentos virtuales (VIs),

� Ejecutar diagnósticos del sistema,

� Ver dispositivos conectados al sistema,

� Actualizar software de National Instruments.

La aplicación NI MAX se instala cuando instalamos el driver DAQmx en configuración t́ıpica. Cuando
conectamos la tarjeta, NI MAX la detecta y podemos probarla. Para ésto, procedemos como sigue:

1. Abrimos la aplicación NI MAX, Fig. B.1(a), y en la ventana principal vemos en la categoŕıa Devices

and Interfaces que la tarjeta DAQ se haya detectado (en el caso mostrado en la figura, la DAQ
aparece como NI USB-6009 ‘‘Dev1’’).

2. Seleccionamos la tarjeta dando clic sobre su referencia (NI USB-6009 ‘‘Dev1’’ en el caso mostrado)
y a continuación damos clic sobre Test Panels. Una vez en la ventana Panel test, damos clic en la
pestaña Analog Output, Fig. B.1(c).
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B.8. Acceso a la DAQ desde MATLAB

3. La tarjeta USB-6009 tiene dos salidas analógicas, éstas son identificadas como los canales Dev1/ao0 y
Dev1/ao1, respectivamente. Seleccionamos el canal Dev1/ao0, por ejemplo, y damos un valor de voltaje
entre cero y cinco (por ejemplo 3.5 como se muestra en Fig. B.1(c)) y damos clic en el botón Undate.
Con ésto, verificamos con un mult́ımetro que el valor de voltaje dado se registre en las terminales
correspondientes de la DAQ. Con ésto, se ha probado que la DAQ funciona correctamente.

(a) NI MAX application is opening. (b) Main window of NI MAX.

(c) Panel Test Window.

Figure B.1: Aplicación NI MAX.

B.8 | Acceso a la DAQ desde MATLAB

B.8.1 | Data Acquisition Toolbox

Data Acquisition Toolbox es un software que proporciona herramientas para leer y escribir datos a hard-
ware externo. Usaremos este toolbox con la finalidad de escribir datos a la tarjeta USB-6009.

Para determinar is Data Acquisition Toolbox está instalado y su versión, escribimos el comando
ver en la ventana de comandos de MATLAB. Si el toolbox está instalado, aparecerá listado como se muestra
en Fig. B.2.
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B. Adquisición de datos y automatización

Figure B.2: Respuesta del comando ver de MATLAB. Se puede comprobar que Data Acquisition Toolbox

está instalado.

B.8.2 | Prueba de DAQ en MATLAB

Anteriormente se verificó el funcionamiento de la DAQ por medio de la aplicación NI MAX. Ahora probaremos
la tarjeta desde MATLAB.

Comenzaremos por verificar si el driver DAQmx se ha instalado correctamente. Para ésto, asegúrese
ejecutar MATLAB como administrador1. Escriba las siguientes instrucciones en la ventaja de comandos de
MATLAB: out = daqhwinfo y out.InstalledAdaptors. Obtendrá una respuesta similar a la mostrada en
Fig. B.3. Si el driver DAQmx se instaló correctamente, debemos ver nidaq en la lista de adaptadores.

Figure B.3: Respuesta de los comandos out = daqhwinfo y out.InstalledAdaptors. Se comprueba con
ésto que el driver DAQmx está instalado correctamente puesto que nidaq aparece en la lista de adaptadores.

1Para abrir MATLAB como administrador, de clic izquierdo en el icono de MATLAB y seleccione la opción Ejecutar como

administrador.
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B.8. Acceso a la DAQ desde MATLAB

B.8.3 | Simple aplicación con la DAQ

Las aplicaciones básicas con las tarjetas de adquisición de datos consisten de:

� Iniciar sesión,

� Leer/Escribir,

� Cerrar sesión.

Iniciar sesión

En esta estación se especifica que tipo de dispositivo se va a usar. En particular, usaremos la salida analógica
de NI USB-6009. usamos el comando analogoutput() como se muestra en Fig. B.4

Figure B.4: Creación del objeto ao. Note que el argumento Dev1 es la etiqueta que NI MAX le asigna a
los dispositivos que se conectan al equipo. Por tanto esta etiqueta puede ser diferente si tiene más de un
dispositivo en su sistema. Vea la documentación NI MAX (Measurement & Automation Explorer) de National
Instruments.

Ahora definiremos el(los) canal(es) que se van a usar. Como vio antes, la tarjeta USB-6009 tiene dos
canales para salida analógica. Usamos el comando addchannel() para agregar el canal cero al objeto ao

como se muestra en Fig. B.5

Figure B.5: Agregando el canal 0 al objeto ao (salida analógica de la DAQ USB-6009).

Leer/Escribir

En particular, solo estamos interesados en escribir datos (analógicos). Para escribir datos en el puerto
analógico (en nuestro caso, en el canal cero), usamos el comando putsample(ao,numerical value), donde
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B. Adquisición de datos y automatización

numerical value es un número que debe estar en el rango UnitsRange (en nuestro caso, entre cero y cinco.
Ver Fig. B.5). Por ejemplo, ejecute putsample(ao,3.5) en la ventaja de comandos de MATLAB y verifique
con un mult́ımetro que el voltaje en las terminales correspondientes de la tarjeta USB-6009 sea de 3.5 Volts.

Cerrar sesión

Cuando se ha finalizado la adquisición de datos, se usa el comando delet() para cerrar la conexión. Por
ejemplo, para cerrar la conexión de salida analógica ao que usamos en los párrafos anteriores, escribimos
delet(ao) en la ventana de comandos de MATLAB.

B.9 | La cámara PixeLINK

Como dispositivo de captura de imágenes, en este trabajo se empleó la cámara PL-B781U de PixeLINK. Ésta
cámara es monocromática con 256 niveles de grises, tiene resolución de 2208×3000 pixeles (6.6 mega pixeles)
y velocidad de captura de 5 fps (frames per second) en resolución máxima. El sensor es de tecnoloǵıa CMOS
con área activa de 7.73× 10.5 mm (13.1 mm diagonal) y tamaño de pixel de 3.5× 3.5 µm.

La captura de imágenes puede hacerse desde el software interfaz gráfica de usuario PixeLINK Capture

OEM. Sin embargo, para fines de automatización, aqúı describiremos la captura de imágenes desde MATLAB.

B.9.1 | Captura de imágenes desde MATLAB

Para capturar imágenes con la cámara PL-B781U desde MATLAB, se requiere del Image Acquisition

Toolbox y el adaptador de video winvideo. Podemos verificar que ambos estén instalados en el sistema
escribiendo el comando imaqhwinfo en la ventana de comandos de MATLAB como se muestra en Fig. B.6.

Figure B.6: Información sobre Image Acquisition Toolbox y los adaptadores de video instalados.

Para verificar que la cámara conectada al equipo ha sido detectada por el sistema, usamos el comando
imaqhwinfo(’winvideo’) como se muestra en Fig. B.7. En la información que se despliega podemos ver el
número de dispositivos detectados (DeviceIDs). Las caracteŕısticas de la cámara detectada se ven agregando
el ID del dispositivo, como se muestra en Fig. B.8.
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Figure B.7: Aplicación NI MAX. NI MAX application is opening.

Figure B.8: Aplicación NI MAX. Main window of NI MAX.

100



Appendix C

Mathematical preliminaries
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C.1. Gradient field integration

C.1 | Gradient field integration

Poisson’s equation is a partial differential equation of the form

∇2
pϕ(p) = ρ(p) (C.1)

which is defined on a closed domain D of the plane and where

∇2
p =

∂2

∂p21
+

∂2

∂p22
+ · · ·+ ∂2

∂p2n
, (C.2)

is the Laplacian operator and p = (p1, p2, · · · , pn) is a n-dimensional independent variable (n = 2 for our
applications). The solution ϕ(p) of Eq. (C.1) is unique up to an additive constant if the Neumann boundary
conditions are given, which specify the values of the normal derivative ∂ϕ/∂ν on the boundary of D. However,
under certain conditions, the boundary conditions are not necessary.

Suppose that one limits the set of possible solutions ϕ(p) to the periodic functions. A periodic function
is a function that, for all p ∈ ℜn, satisfies

ϕ(p) = ϕ(p+ q1) = ϕ(p+ q2) = · · · = ϕ(p+ qn),

where qi (i = 1, n) are n-dimensional vectors of the form

q1 =
[
q̄1 0 0 · · · 0

]
,

q2 =
[
0 q̄2 0 · · · 0

]
,

q3 =
[
0 0 q̄3 · · · 0

]
,

...

qn =
[
0 0 0 · · · q̄n

]
,

with q̄i (i = 1, n) being fixed constants.

C.2 | The least-squares method

For the experimental areas, one of the most important mathematical tools to data analysis is the least-squares
method. Particularly, we consider a linear system which can be modelled as

Ax = b, (C.3)

where A ∈ ℜM×N is aM×N matrix which represents the model of a linear system, x ∈ ℜN is the coefficients
vector and b ∈ ℜM a observations vector.

If an appropriate observation b is available and the operator A is given (a polynomial, for example),
the problem is to obtain the coefficients vector x such that the error

E = b−Ax, (C.4)

(for a particular norm) is minimum. Particularly, in this work it is considered the ℓ2-norm for vectorial

102



C. Mathematical preliminaries

N -dimensional euclidean space. Thus,

S(x) = ∥E∥2 = ∥b−Ax∥2 = (b−Ax)T (b−Ax)

= ∥b∥2 + ∥Ax∥2 − 2bTAx

= ∥b∥2 + xTATAx− 2bTAx.

(C.5)

the minimum can be found by
∂

∂x
S(x) = 0, (C.6)

where
∂

∂x
S(x) =

∂

∂x
(xTATAx)− 2

∂

∂x
(bTAx). (C.7)

For the first term of the right hand of the above equation we have that the vector of interest x is
operated by the symmetric matrix ATA. For illustration purposes, even x ∈ ℜn, we consider the simple case
x ∈ ℜ3, therefore

∂

∂x
(xTATAx) =

∂

∂x

[x1 x2 x3
] α1 α4 α5

α4 α2 α6

α5 α6 α3

x1x2
x3


=

∂

∂x

α1x
2
1 + α4x1x2 + α5x1x3+

α4x1x2 + α2x
2
2 + α6x2x3+

α5x1x3 + α6x2x3 + α3x
2
3


=

2α1x1 + 2α4x2 + 2α5x3
2α4x1 + 2α2x2 + 2α6x3
2α5x1 + 2α6x2 + 2α3x3


= 2

α1 α4 α5

α4 α2 α6

α5 α6 α3

x1x2
x3


= 2ATAx.

(C.8)

Similarly,

∂

∂x
(bTAx) =

∂

∂x

[b1 b2 b3
] a11 a12 a13
a21 a22 a23
a31 a32 a33

x1x2
x3


=

∂

∂x

a11b1x1 + a12b1x2 + a13b1x3+
a21b2x1 + a22b2x2 + a23b2x3+
a31b3x1 + a32b3x2 + a33b3x3


=

a11b1 + a21b2 + a31b3
a12b1 + a22b2 + a32b3
a13b1 + a23b2 + a33b3


=

a11 a21 a31
a12 a22 a32
a13 a23 a33

b1b2
b3


= AT b.

(C.9)

Therefore, the Eq. (C.7) can be rewritten as

∂

∂x
S(x) = 2ATAx− 2AT b. (C.10)
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Thus, the solution for x which satisfies the equation (C.6) leads to

2ATAx− 2AT b = 0, (C.11)

or,
x = A†b, (C.12)

where
A† := (ATA)−1AT (C.13)

is the left least-squares (Moore-Penrose, pseudo-inverse, or generalized) inverse of A.

The right least-squares inverse of A is another useful operator. It is defined as

A‡ := AT (AAT )−1. (C.14)

C.3 | Polynomial functions

Throughout this work, the polynomial functions are frequently used. Thus, in this section an exposition of
its representation is done. Also is exposed the least-squares polynomial approximation.

For one-dimension, the n-degree polynomial p(x) is defined as

p(x) =

n∑
u=0

cux
u, (C.15)

where cu ∈ ℜ are constant coefficients.

For two-dimension, the polynomial p(x, y) of degree almost n is defined as

p(x, y) =

n∑
u=0

u∑
v=0

cuvx
vyu−v, (C.16)

where cuv are constant coefficients.

The usefulness of polynomial functions relies on the fact that any smooth function can be approximated
by the Taylor series (polynomial function). Moreover, the polynomial functions are linear functions on the
coefficients. Thus, these polynomial can be efficiently fitted to experimental datasets by the least-squares
method.

C.3.1 | One-dimensional polynomial fitting

A common problem though this work is the polynomial fitting to a given measured data. For this, we apply
the least-squares method as follows. Let x ∈ ℜN be the vector

x = [x1 x2 · · · xN ]T (C.17)

with entries xj such that
x1 < x2 < · · · < xN ,

and where xj+1 − xj for j = 1, N − 1 is not necessarily constant, i.e., the points xi are non-uniformly
distributed in general.
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If for each point xi the respective observation p(xi) is available, then the equation (C.15) can be
formulated as the equations system

P = XC, (C.18)

where the regression matrix X ∈ ℜN×n, the coefficient C ∈ ℜn vector, and the observation P ∈ ℜN vector,
are defined, respectively, as

X =
[
1N×1 x x.2 · · · x.n

]
N×(n+1)

, (C.19)

C =
[
c0 c1 · · · cn

]T
1×(n+1)

, (C.20)

P =
[
p(x1) p(x2) · · · p(xN )

]T
1×N

, (C.21)

with [·].k denoting the elementwise k-th exponentiation. It is worth mentioning that the columns of the
regression matrix X are the basis functions of the assumed model.

For a given dataset {xi, p(xi)}, the unknown coefficient vector C is approximated by solving the matrix
equation (C.18) as

Ĉ = X†P. (C.22)

Then, the fitting of the polynomial (C.15) to the data observations P is performed by

p̂(x) = XĈ, (C.23)

where p̂(x) is the best approximation (in least-squares sense) of the given data p(xi).

C.3.2 | Two-dimensional polynomial fitting

The above results are easily extended to the two-dimensional polynomial (C.16). In this case, it is necessary
that the observations p(xj , yi) be given on a rectangular grid by a matrix P ∈ ℜM×N as

P =


p(x1, y1) p(x2, y1) · · · p(xN , y1)
p(x1, y2) p(x2, y2) · · · p(xN , y2)

...
...

. . .
...

p(x1, yM ) p(x2, yM ) · · · p(xN , yM )


with the sample points (xj , yi) defined by the vectors

x = [x1 x2 · · · xN ]T ,

y = [y1 y2 · · · yM ]T ,
(C.24)

where the nodes {xj} and {yi} are not necessary uniformly distributed.

Accordingly, the equation (C.16) can be write as

P = Y CXT , (C.25)

where the regression matrices X and Y are given by

X =
[
1N×1 x x.2 · · · x.n

]
N×(n+1)

,

Y =
[
1N×1 y y.2 · · · y.n

]
M×(n+1)

,
(C.26)
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and the coefficients are grouped in the matrix

C =


c00 c01 · · · c0n
c10 c11 · · · 0
...

...
. . .

...
cn0 0 · · · 0


(n+1)×(n+1)

.

This coefficient matrix is an upper cross-triangular (cuv = 0 for u + v > n) because a polynomial of degree
at most n is represented. However, the equation (C.25) represents a general two-dimensional polynomial of
(u+ v)th degree.

Now, for a given dataset {xv, yu, p(xv, yu)}, the polynomial’s coefficient C are computed from (C.25)
by

Ĉ = Y †PX‡. (C.27)

Finally, the fitting procedure of the polynomial (C.16) is carried out from (C.25) as

p̂(x,y) = Y ĈXT ,

where p̂(x,y) is least-squares approximation to the data P at (x,y) for the polynomial basis (C.26).

It is worth mentioning that, in both one- and two-dimensional cases, once the polynomial’s coefficient
Ĉ is available, the sample vector(s) can be changed by any other(s). Thus, with the corresponding
regression matrices, the reconstructed polynomial p̂ can be obtained at any value x or (x,y).

This possibility allow us perform others data processing procedures such as interpolation, extrapola-
tion, increasing resolution, decimation, o simply a redefinition of the samples point.

C.3.3 | Multiple fitting: one-dimensional case

Consider that there are available multiple measurements Yk with the same regression matrix and different
vector of parameters

Y1 = AΘ1

Y2 = AΘ2

...

Yn = AΘn

(C.28)

If the measurements Yi corresponds to the same system, then

Θ1 = Θ2 = · · · = Θn = Θ. (C.29)

Therefore, the system of matrix equations (C.28) can be written as
Y1
Y2
...
Yn

 =


A
A
...
A


︸︷︷ ︸

A

Θ = AΘ. (C.30)
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We have the Moore–Penrose pseudoinverse

A† = (ATA)−1AT

=

[AT · · · AT
] A...
A




−1 [
AT · · · AT

]
=

1

n
(ATA)−1

[
AT · · · AT

]
=

1

n

[
A† A† · · · A†] .

(C.31)

Therefore, the solution Eq. (C.30) for Θ is

Θ =
1

n

[
A† A† · · · A†]


Y1
Y2
...
Yn


=

1

n
(Θ1 +Θ2 + · · ·+Θn).

(C.32)

That is, the vector Θ can be obtained as the average of the least-squares solutions Θk, k = 1, n. Note that
this requires n regressions. Alternatively, the Eq. (C.32) can be written as

Θ =
1

n
(ATA)−1

[
AT AT · · · AT

]

Y1
Y2
...
Yn


=

1

n
(ATA)−1(ATY1 +ATY2 + · · ·+ATYn)

=
1

n
A†(Y1 + Y2 + · · ·+ Yn).

(C.33)

That is, the vector Θ is obtained as the least squares solution of the average of the provided measurements
Yk. Note that, unlike the Eq. (C.32) which requires n regressions, the equation (C.33) performs a single
regression.

C.3.4 | Multiple fitting: two-dimensional case

Consider that there are n measurements Ik, k = 1, n, which are approximated as

Y C1X
T = I1

Y C2X
T = I2

...

Y CnX
T = In,

(C.34)
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where Ck are the parameter matrices of the polynomial with basis Y and X. If we require a single matrix of
parameters C which solves all the provided data; namely

Y
Y
...
Y


︸ ︷︷ ︸

Y

CXT =


I1
I2
...
In


︸ ︷︷ ︸

I

(C.35)

or
YCXT = I. (C.36)

We have that

Y† =
1

n
(Y TY )−1

[
Y T Y T · · · Y T

]
=

1

n

[
Y † Y † · · · Y †] . (C.37)

Therefore, the solution of Eq. (C.36) for C leads to

C =
1

n

[
Y † Y † · · · Y †] IX‡

=
1

n
(Y †I1 + Y †I2 + · · ·+ Y †In)X

‡

=
1

n
(Y †I1X

‡ + Y †I2X
‡ + · · ·+ Y †InX

‡)

=
1

n
(C1 + C2 + · · ·+ Cn).

(C.38)

That is, the least squares solution C for all measurements is obtained as the average of the parameters Ck

for each provided data Ik (n regressions are required).

Similarly,

C =
1

n
(Y †I1 + Y †I2 + · · ·+ Y †In)X

‡

=
1

n
Y †(I1 + I2 + · · ·+ In)X

‡.

(C.39)

That is, the parameters C are obtained as the least squares solution for the average of the provided data
(only one regression is performed).

C.4 | Aproximación de la distribución de irradiancia

Usando una fuente de iluminación láser, la distribución de irradiancia I(p) es modelada por funciones Gaus-
sianas [?] donde se asume, sin pérdida de generalidad, están centradas en el origen del sistema coordenado
como

I(p) = hep
TAp, (C.40)

donde p = [x y]T es un vector de posición, h ∈ ℜ son las amplitudes y A ∈ ℜ2×2 una matriz definida negativa.
La serie de Taylor de I(p) (C.40) en el punto p0 = [0 0]T =: 0p es

I(p) = I(p0) + (p− p0)
T∇I(p0) +

1

2
(p− p0)

T∇2I(p)(p− p0) + · · · , (C.41)
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donde el jacobiano ∇Ii(0p) y hessiano ∇2Ii(0p) son

∇I(p0) = 2I(p0)Ap0 = 0p,

∇2I(p0) = 2I(p0)
[
A+ 2Ap0p

T
0 A
]
= 2I(p0)A = 2hA.

Si se considera únicamente una pequeña región de iluminación alrededor del origen 0p, una aproximación
de segundo orden es suficiente para representar la irradiancia I(p) (C.40) [?]. La aproximación de segundo
orden de I(p) alrededor de 0p es

I(p) ≈ h+ hpTAp =: I(p),
que es un polinomio de segundo grado.

C.5 | Matrix analysis

C.5.1 | Independence, subspace, basis, and dimension

A set of vectors {a1, · · · , an} (ai ∈ ℜm) is linearly independent if the linear combination

Ax = 0m, (C.42)

with A = [a1, a2, · · · , an] and x ∈ ℜn, has the trivial solution x = 0n. Otherwise, the set of vectors ai is said
to be linearly dependent.

Given a collection of vectors ai ∈ ℜm (i = 1, n), the set of all linear combinations of these vectors is a
subspace referred to as the span of {a1, · · · , an}:

span{a1, · · · , an} =


n∑

j=1

βjaj : βj ∈ ℜ

 .

If {ai, · · · , an} is independent and b ∈ span{ai, · · · , an}, then b is a unique linear combination of the aj .

All bases for a subspace S have the same number of elements. This number is the dimension and is
denoted by dim(S)

C.5.2 | Range, null space, and rank

There are two important subspaces associated with an m-by-n matrix A. The range of A is defined by

ran(A) = {y ∈ ℜm : y = Ax for some x ∈ ℜn},

and the null space of A is defined by

null(A) = {x ∈ ℜn : Ax = 0m}.

If A = [a1 · · · an] is a column partitioning, then

ran(A) = span{a1, · · · , an}.

The rank of a matrix A is defined by
rank(A) = dim(ran(A)).

It can be shown that rank(AT ) = rank(A). We say that A ∈ ℜm×n is rank deficient if rank(A) < min{m,n}.
If A ∈ ℜm×n, then

dim(null(A)) + rank(A) = n.
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C.5.3 | Orthogonality and the singular value decomposition

Orthogonality has a very prominent role to play in matrix computations. Among other things, the singular
value decomposition (SVD) enables us to intelligently handle the matrix rank problem. The concept of rank,
though perfectly clear in the exact arithmetic context, is tricky in the presence of round off error and fuzzy
data. With the SCD we can introduce the practical notion of numerical rank.

C.5.4 | Orthogonality

A set of vectors {x1, · · · , xp} in ℜm is orthogonal if xTi xj = 0 wherever i ̸= j and orthonormal if xTi xj = δij .
Intuitively, orthogonal vectors are maximally independent for they point in totally different directions.

A collection of subspaces S1, · · · , Sp in ℜm is mutually orthogonal if xT y = 0 wherever x ∈ Si and
y ∈ Sj for i ̸= j. The orthogonal complement of a subspace S ⊆ ℜm is defined by

S⊥ = {y ∈ ℜm : yTx = 0 for all x ∈ S}

and it is not hard to show that ran(A)⊥ = null(AT ). The vectors v1, · · · , vk form an orthonormal basis for
subspace S ⊆ ℜm if they are orthonormal and span S.

A matrix Q ∈ ℜm×m is said to be orthogonal if QTQ = I. If Q = [q1 · · · qm] is orthogonal, then
the qi form an orthonormal basis for ℜm. It is always possible to extend such a basis to a full orthonormal

basis {v1,
... , vm} for ℜm.

Theorem 2. If V1 ∈ ℜn×r has orthonormal columns, then there exists V2 ∈ ℜn×(n−r) such that

V = [V1 V2]

is orthogonal. Note that ran(V1)
⊥ = ran(V2).

C.5.5 | Norms and orthogonal transformations

The 2-norm is invariant under orthogonal transformation, for if QTQ = I, then ∥Qx∥22 = xTQTQx =

xTx = ∥x∥22. The matrix 2-norm and the Frobenius norm are also invariant with respect to orthogonal
transformations. In particular, it is easy to show that for all orthogonal Q and Z of appropriate dimensions
we have

∥QAZ∥F = ∥A∥F ,

and
∥QAZ∥2 = ∥A∥2 .

C.5.6 | Inverse matrix

The inverse of two square matrices A and B of the same size is

(A+B)−1 = A−1 − (I+A−1B)−1A−1BA−1. (C.43)

This equality can be verified as follows. Let

(A+B)−1 = A−1 +X. (C.44)
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By taking into account the identity

I = (A−1 +X)(A+B)

= A−1A+XA+A−1B +XB,

and rearranging terms, we have

X(A+B) = −A−1B.

Solving for X,

X = −A−1B(A+B)−1

= −A−1B(A−1 +X)

= −A−1BA−1 −A−1BX.

Rearranging terms again,

(I+A−1B)X = −A−1BA−1,

and solving for X, we have

X = −(I+A−1B)−1A−1BA−1.

Finally, the substitution of this last equation in (C.44) proofs the equality (C.43).

The most general result is the Woodbury matrix identity or matrix inversion lemma:

(A+BCD)−1 = A−1 −A−1B(C−1 +DA−1B)−1DA−1. (C.45)

C.5.7 | The singular value decomposition

The theory of norm developed in the previous two sections can be used to prove the extremely useful singular
value decomposition.

Theorem 3 (Singular value decomposition (SVD)). If A is a real m × n matrix, then there exist two
orthogonal matrices

U = [u1 · · · um] ∈ ℜm×m,

V = [v1 · · · vm] ∈ ℜn×n,

such that

UTAV = diag(σ1, · · · , σp) ∈ ℜm×n

with p = min{m,n} and where σ1 ≥ σ2 ≥ · · · ≥ σp ≥ 0.

C.6 | Taylor expansion

The Taylor series is given as

f(x) =

∞∑
n=0

f (n)(a)

n!
(x− a)n, (C.46)

where a is the approximation point. That is, the polynomial expansion is built from the point a (where the
approximation is exact).
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There is another approach in Taylor series, the so-called fordward expansion of a funtion f(x) about
a point x:

f(x+ h) =

∞∑
n=0

hn

n!
f (n)(x). (C.47)

This equation allow us to know the value of the function f at the point x + h if the value of f and its
derivatives are known at the point x.

C.6.1 | Taylor expansion for multivariate functions

If the function f has more than one independent variable, say f(x, y), the Taylor expansion becomes

f(x, y) = f(a, b) + (x− a)
∂f

∂x
+ (y − b)

∂f

∂y

+
1

2!

[
(x− a)2

∂2f

∂x2
+ 2(x− a)(y − b)

∂2f

∂x∂y
+ (y − b)2

∂2f

∂y2

]
+

1

3!

[
(x− a)3

∂3f

∂x3
+ 3(x− a)2(y − b)

∂3f

∂x2∂y

+3(x− a)(y − b)2
∂3f

∂x∂y2
+ (y − b)3

∂3f

∂y3

]
+ · · · , (C.48)

with all derivatives evaluated at the point (a, b). Using αjt = xj − xj0, we may write the Taylor expansion
for m independent variables n the symbolic form

f(x1, · · · , xm) =

∞∑
n=0

tn

n!

(
m∑
i=1

αi
∂

∂xi

)n

f(x1, · · · , xm)

∣∣∣∣∣
(x10,··· ,xm0)

. (C.49)

For the particular case where the point where the derivatives are evaluated is (x10, · · · , xm0) =
(0, · · · , 0), we obtain the Maclaurin series.

C.6.2 | Two-dimensional case

For the particular case of functions f : ℜ2 → ℜ, it is convenient to define the vectorial variables

ξ = [x y]T ,

α = [a b]T ,

then we have the truncated Taylor series in the compact form given as

f(ξ) = f(α) + (ξ − α)T∇f +
1

2!
(ξ − α)T [∇2f ](ξ − α) (C.50)

where

∇f =

[
∂f/∂x
∂f/∂y

]
, (C.51)

and

∇T f =

[
∂2f/∂x2 ∂2f/∂x∂y
∂2f/∂y∂x ∂2f/∂y2

]
. (C.52)
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C.7 | Matrix form of the square of a summation

Let a polynomial of the form
y = a1x1 + a2x2 + · · ·+ anxn. (C.53)

The square y2 is given as

y2 =a21x
2
1 + a22x

2
2 + · · ·+ a2nx

2
n

+ 2a1a2x1x2 + 2a1a3x1x3 + · · ·+ 2a1anx1xn

+ 2a2a3x2x3 + 2a2a4x2x4 + · · ·+ 2a2anx2xn

+ 2a3a4x3x4 + 2a3a5x3x5 + · · ·+ 2a3anx3xn

+ · · ·+ 2an−1anxn−1xn.

(C.54)

The square y2 can be stated in a compact form using matrix notation as follows. Let a and x be the
vectors

a =


a1
a2
...
an

 , x =


x1
x2
...
xn

 . (C.55)

Then, the polynomial y is rewritten as
y = aTx, (C.56)

Therefore, the square y2 is obtained as

y2 = (aTx)2 = (aTx)T (aTx)

= xTaaTx.
(C.57)

C.8 | Sampling signals

Consider the rectangle function Π(x) defined as

Π(x) =


1 |x| < 1/2,

1/2 |x| = 1/2,

0 otherwise.

(C.58)

Notice that the rectangle Π has unit width and unit height. The integral of the rectangle function in all its
domain is equal to one; i.e., ∫ ∞

−∞
Π(x)dx =

∫ 1/2

−1/2

1dx = 1. (C.59)

The shape of the rectangle function can be modified by scaling the abscissa x and modulating the
amplitude. Among all possible shapes for Π(x) we are interested in such of them that preserves the property
given in Eq. (C.59).

The width of the rectangle is equal to one. A rectangle with any other width ∆x can be obtained as

Π
( x

∆x

)
. (C.60)
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We are interested in rectangles that preserves the property given in Eq. (C.59). Since∫ ∞

−∞
Π
( x

∆x

)
dx =

∫ ∆x/2

−∆x/2

1dx = ∆x. (C.61)

Therefore, the rectangle pulse given as

r(x) =
1

∆x
Π
( x

∆x

)
(C.62)

preserves the property given in Eq. (C.59) as required. It is worth mentioning that the rectangle pulse r(x)
is an even function; that is

r(−x) = r(x). (C.63)

The rectangle pulse r(x) lead us to the delta function as the limit ∆x→ 0; i.e.,

lim
∆x→0

1

∆x
Π
( x

∆x

)
= δ(x) (C.64)

From this, the even property and unit area of the rectangle function are inherited to the delta function.
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Appendix D

Implementación en MATLAB del
algoritmo GPSI propuesto

En matemáticas uno no entiende las cosas, se
acostumbra a ellas

John Von Neumman

Contents
D.1 Función script de MATLAB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

D.2 Modelo en Matlab-Simulink . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

D.3 Interfaz gráfica de usuario gráfica . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

D.4 Automatización del interferómetro de Michelson usando piezoeléctrico y el algoritmo
GPSI propuesto . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

Primero se implementará el algoritmo propuesto anteriormente en una función escrita en código m de MAT-
LAB. Más adelante se muestra la implementación en MATLAB-Simulink para aplicaciones en tiempo real
y finalmente se presenta una interfaz de usuario gráfica (GUI, por las siglas en inglés: Graphic User
Interface) para interactuar con el programa durante el tiempo de ejecución.
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D.1 | Función script de MATLAB

Podemos dividir el algoritmo propuesto en cuatro partes elementales:

1. Obtención de la luz de fondo por ajuste (??) del polinomio de segundo grado (1.19) a los datos exper-
imentales (??).

2. Obtención de la luz de modulación al cuadrado por ajuste (??) del polinomio de cuarto grado (1.20) a
los datos obtenidos al sustraer la luz de fondo (obtenida en el paso anterior) a los datos experimentales
(1.24). Normalizar los interferogramas.

3. Solución de (3.27) por mı́nimos cuadrados (3.28) para obtener los pasos de fase (3.29) y recuperar el
corrimiento de fase (??).

4. Solución de (1.37) por mı́nimos cuadrados (3.32) para obtener la fase envuelta (3.33).

Los dos primeros pasos de la lista anterior terminan con la normalización de los interferogramas mientras que
los últimos dos finalizan con la obtención de la fase envuelta. En Fig. D.1 se presenta, en código m escrito
en MATLAB, la función principal GPSI que invoca a las funciones subordinadas NormGPSI y WPhase para
normalizar los interferogramas y obtener la fase envuleta, respectivamente.

La función principal GPSI recibe dos argumentos: la matriz de interferogramas I y el número de inter-
ferogramas K. La matriz de interferogramas es de la forma I=[I0;I1;...;Ik;...;IK-1] donde cada bloque
Ik con k=0,1,...K-1 es un interferograma a procesar. Como es posible manipular los interferogramas (ma-
trices bidimensionales con sistema coordenado x-y) como si éstos fuesen vectores (matrices unidimensionales
con sistema coordenado p); cuando inicia el procesamiento se emplea la función MatToVec para convertir las
matrices a vectores y una vez terminado el procesamiento se emplea la función VecToMat para convertir los
vectores a matrices y los datos se puedan visualizar en su disposición original.

D.2 | Modelo en Matlab-Simulink

El algoritmo propuesto es de ejecución relativamente rápida puesto que es posible procesar desde dos inter-
ferogramas o más, y es no iterativo. Otra propiedad importante es que no requiere intervención de usuario
para dirigir su flujo de ejecución o elegir datos de entrada. Estas propiedades permiten desarrollar programas
para ejecución en tiempo real. Con fines ilustrativos en Fig. D.2 se presenta la implementación del algoritmo
propuesto en diagrama de bloques sobre la plataforma de Matlab-Simulink. En Fig. D.2(a) se muestra
el diagrama de bloques principal en el modelo Simulink y son claramente visible las dos partes en las que
se divide el algoritmo: la normalización de los interferogramas (Subsistema ⌊Normalize⌉, Fig. D.2(c)) y la
recuperación de la fase envuelta (Subsistema ⌊Phase Recover⌉, Fig. D.2(d)).

En Fig. D.2(b) se presenta el subsistema ⌊Interfs⌉ que en este caso solo genera un interferograma de
referencia I0 y un interferograma I1 con corrimiento de fase que vaŕıa de forma triangular en el intervalo
desde 0.14 a 3 rad. No es muy dif́ıcil configurar el subsistema ⌊Interfs⌉ para que adquiera los interferogramas
desde una cámara de video conectada a la computadora. En Fig. D.2(e) se muestra el subsistema ⌊Scope⌉
dedicado a desplegar el video de los interferogramas procesándose y la fase envuelta obtenida. El bloque
⌊Scope1⌉ muestra la superposición del corrimiento de fase exacto y estimado por el algoritmo.

En Fig. D.3 se muestra la captura de las ventanas de video cuando el programa Simulink descrito se
está ejecutando.
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[1.3 6.4 10.5 27]cm

(a) Función principal GPSI y la función subordinada
NormGPSI.

[1.3 9.2 10.5 27]cm

(b) Funciones subordinadas WPhase, MatToVec, VecToMat, y
sat.

Figure D.1: Implementación en MATLAB del algoritmo de interferometŕıa de corrimiento de fase gener-
alizado por estimación de parámetros usando el método de mı́nimos cuadrados.

D.3 | Interfaz gráfica de usuario gráfica

La implementación en código m permite evaluar el funcionamiento del algoritmo propuesto procesando inter-
ferogramas simulados y reales. Sin embargo, para verificar el comportamiento del algoritmo en tiempo real,
se presentó el modelo Simulink donde, para el caso mostrado, se toma un interferográma estático y una señal
de video simulada que consiste en interferogramas que cambian el corrimiento de fase con el tiempo. Cabe
señalar que no es muy dif́ıcil configurar el modelo Simulink presentado para que la señal de video a procesar
se tome de una cámara digital conectada a la computadora.

Ahora, presentamos una interfaz de usuario gráfica (GUI) que agrupa las ventajas de las dos imple-
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(c) Diagrama de bloques del subsistema ⌊Normalize⌉.
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(d) Diagrama de bloques del subsistema ⌊Phase Recover⌉.

normalize2

Interpreted
MATLAB Fcn

normalize1

Interpreted
MATLAB Fcn

normalize

Interpreted
MATLAB Fcn

const

0.5

concat

2

Video Viewer1

Video
Viewer

ImageImageImage

Video Viewer

Video
Viewer

ImageImageImage

Matrix
Concatenate2

2

Matrix
Concatenate1

2
Gain1

5

Gain

-K-

I1
5

I0
4

b
3

a
2

phi_w
1

[3.4 11.2 17.5 18.7]cm

(e) Diagrama de bloques del subsistema ⌊Scope⌉.

Figure D.2: Implementación por diagrama de bloques del algoritmo propuesto en un modelo Matlab-Simulink
para aplicaciones en tiempo real.

mentaciones anteriores. Con la GUI es posible previsualizar la señal de video obtenida de una cámara CCD
y con un botón tomar un interferograma para procesarlo por el algoritmo. La GUI presenta la luz de fondo
estimada, la luz de modulación y el corrimiento de fase presente en el interferográma en la señal de video.
En Fig. D.4 se muestra una pantalla de la GUI ejecutándose procesando interferogramas generados en el
interferómetro de Michelson (Fig. D.4(a)) y en la prueba de Ronchi (Fig. D.4(b)).
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Figure D.3: Captura de pantalla cuando el programa Simulink mostrado en Fig. D.2 se está ejecutando.

D.4 | Automatización del interferómetro de Michelson usando piezoeléctrico y
el algoritmo GPSI propuesto

En el interferómetro de Michelson, para proporcionar corrimientos de fase, es necesario desplazar el espejo
de referencia. El interferómetro de Michelson comercial PASCO, está equipado con un tornillo micrométrico
de precisión para desplazar el espejo de referencia y obtener corrimientos de fase. Sin embargo, al ser un
dispositivo manual, los experimentos registran errores debido a la perturbación provocada por el usuario al
operar sobre el tornillo. Para superar esta desventaja, se emplearon piezoelétricos instalados en el espejo
de referencia. Los piezoeléctricos, a través de una tarjeta de adquisición de datos (DAQ USB 9001 de
National Instruments), son operados desde la computadora estableciendo la comunicación a través de un
puerto USB. Se desarrolló una GUI en Matlab y ésta genera las señales de control al piezoeléctrico, y graba
el interferograma a travéz de la cámara CCD conectada.

Con el sistema desarrollado, se analizó la linealidad y precisión del piezoeléctrico. El experimento
consistió en dar incrementos de voltaje a los piezoeléctricos de 5 mV. Tales incrementos de voltaje provocaŕıa
pasos de fase constantes e iguales a 0.9 rad. Se realizaron tres experimentos con 460 interferogramas cada
uno (Mostrados con linea roja, verde y azul en Fig. D.5). El la primera gráfica de Fig. D.5 se muestran los
pasos de fase obtenidos. En la segunda gráfica se muestra el ajuste de un polinomio de tercer grado para
compensar la deriva. Sustrayendo el polinomio ajustado, se elimina el paso de fase y la deriva, quedándose
solo con la incertidumbre de las mediciones como se muestra en la tercera gráfica de Fig. D.5.

De la tercera gráfica en Fig. D.5, podemos tomar como 0.02 rad. como el intervalo de incertidumbre.
El cambio de fase desde una franja brillante hasta otra representa un paso de fase de 2π y equivale a
una diferencia de camino óptico de la longitud de onda λ. Con los algoritmos propuestos y el sistema
interferométrico considerado, la incertidumbre de 0.02 rad. señalan que se puede alcanzar precisión del orden
de λ/300. La fuente láser empleada es de λ = 638 nm., por lo que con el sistema descrito se pueden distinguir
perturbaciones en el frente de onda hasta de 2.13 nm.
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(a) Procesando video de interferogramas obtenidas desde el interferómetro de Michelson.

(b) Procesando video en la prueba de Ronchi.

Figure D.4: Interfaz de usuario en tiempo de ejecución.
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Figure D.5: Implementación en MATLAB del algoritmo de interferometŕıa de corrimiento de fase gener-
alizado por estimación de parámetros usando el método de mı́nimos cuadrados.
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[40] J. Garćıa-Márquez, D. Malacara-Hernández, and M. Serv́ın, “Analysis of interferograms with a spatial
radial carrier or closed fringes and its holographic analogy,” Appl. Opt., vol. 37, pp. 7977–7982, Dec
1998.

[41] R. Langoju, A. Patil, and P. Rastogi, “Super-resolution fourier transform method in phase shifting
interferometry,” Opt. Express, vol. 13, pp. 7160–7173, Sep 2005.

[42] R. Vander, S. G. Lipson, and I. Leizerson, “Fourier fringe analysis with improved spatial resolution,”
Appl. Opt., vol. 42, pp. 6830–6837, Dec 2003.

[43] J. L. Marroquin, J. E. Figueroa, and M. Servin, “Robust quadrature filters,” J. Opt. Soc. Am. A,
vol. 14, pp. 779–791, Apr 1997.

[44] J. L. Marroquin, M. Servin, and R. Rodriguez-Vera, “Adaptive quadrature filters and the recovery of
phase from fringe pattern images,” J. Opt. Soc. Am. A, vol. 14, pp. 1742–1753, Aug 1997.

[45] J. B. Liu and P. D. Ronney, “Modified fourier transform method for interferogram fringe pattern
analysis,” Appl. Opt., vol. 36, pp. 6231–6241, Sep 1997.

[46] K. Larkin, “A self-calibrating phase-shifting algorithm based on the natural demodulation of two-
dimensional fringe patterns,” Opt. Express, vol. 9, pp. 236–253, Aug 2001.

[47] W. Chen, X. Su, Y. Cao, Q. Zhang, and L. Xiang, “Method for eliminating zero spectrum in fourier
transform profilometry,” Optics and Lasers in Engineering, vol. 43, no. 11, pp. 1267 – 1276, 2005.

[48] W. Chen, X. Su, Y. Cao, L. Xiang, and Q. Zhang, “Fourier transform profilometry based on a fringe
pattern with two frequency components,” Optik - International Journal for Light and Electron Optics,
vol. 119, no. 2, pp. 57 – 62, 2008.

125



BIBLIOGRAPHY

[49] J. Zhong and J. Weng, “Generalized fourier analysis for phase retrieval of fringe pattern,” Opt. Express,
vol. 18, pp. 26806–26820, Dec 2010.

[50] C. Quan, H. Niu, and C. Tay, “An improved windowed fourier transform for fringe demodulation,”
Optics and Laser Technology, vol. 42, no. 1, pp. 126 – 131, 2010.

[51] Y. Fu, J. Wu, and G. Jiang, “Fourier transform profilometry based on defocusing,” Optics & Laser
Technology, vol. 44, no. 4, pp. 727 – 733, 2012.

[52] M. M. Hasan, K. Teramoto, and S. Tanemura, “Windowed fourier assisted two-dimensional hilbert
transform for fringes phase extraction,” Optik - International Journal for Light and Electron Optics,
no. 0, pp. –, 2013.

[53] W. Gao, Q. Kemao, H. Wang, F. Lin, and H. S. Seah, “Parallel computing for fringe pattern processing:
A multicore cpu approach in matlab® environment,” Optics and Lasers in Engineering, vol. 47, no. 11,
pp. 1286 – 1292, 2009.

[54] L. Huang, Q. Kemao, B. Pan, and A. K. Asundi, “Comparison of fourier transform, windowed fourier
transform, and wavelet transform methods for phase extraction from a single fringe pattern in fringe
projection profilometry,” Optics and Lasers in Engineering, vol. 48, no. 2, pp. 141 – 148, 2010. Fringe
Projection Techniques.

[55] Y. Takeda, Y. Oshida, and Y. Miyamura, “Random phase shifters for fourier transformed holograms,”
Appl. Opt., vol. 11, pp. 818–822, Apr 1972.

[56] S. Lai, B. King, and M. A. Neifeld, “Wave front reconstruction by means of phase-shifting digital in-line
holography,” Optics Communications, vol. 173, no. 1–6, pp. 155 – 160, 2000.

[57] Y. Zhang, Q. Lu, and B. Ge, “Elimination of zero-order diffraction in digital off-axis holography,”
Optics Communications, vol. 240, no. 4–6, pp. 261 – 267, 2004.

[58] G.-L. Chen, C.-Y. Lin, M.-K. Kuo, and C.-C. Chang, “Numerical suppression of zero-order image in
digital holography,” Opt. Express, vol. 15, pp. 8851–8856, Jul 2007.

[59] C. Roddier and F. Roddier, “Interferogram analysis using fourier transform techniques,” Appl. Opt.,
vol. 26, pp. 1668–1673, May 1987.

[60] K. A. Goldberg and J. Bokor, “Fourier-transform method of phase-shift determination,” Appl. Opt.,
vol. 40, pp. 2886–2894, Jun 2001.

[61] E. Hu and Y. He, “Surface profile measurement of moving objects by using an improved π phase-shifting
fourier transform profilometry,” Optics and Lasers in Engineering, vol. 47, no. 1, pp. 57 – 61, 2009.

[62] F. Bai, F. Han, Y. Xu, X. Bao, and S. Gan, “Modified fourier-transform method for phase-shift cali-
bration,” Optics and Lasers in Engineering, vol. 49, no. 7, pp. 932 – 936, 2011.

[63] M. Shan, B. Hao, Z. Zhong, M. Diao, and Y. Zhang, “Parallel two-step spatial carrier phase-shifting
common-path interferometer with a ronchi grating outside the fourier plane,” Opt. Express, vol. 21,
pp. 2126–2132, Jan 2013.

[64] S. Liu, L. Zhong, F. Zhang, and X. Lu, “Frequency domain phase extraction algorithm for phase-shifting
interferometry with random phase-shifting amount and low-sampling rate,” Optics Communications,
vol. 291, no. 0, pp. 150 – 154, 2013.
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